WARNING: HAZARDOUS VOLTAGE PRESENT UP TO 10 MINUTES AFTER POWER IS DISCONNECTED
Global Technical Support

Go to www.aerotech.com/global-technical-support for information and support about your Aerotech products. The website provides downloadable resources (such as up-to-date software, product manuals, and Help files), training schedules, and PC-to-PC remote technical support. You can also complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. For immediate help, contact a service office or your sales representative. Have your customer order number available before you call or include it in your email.

<table>
<thead>
<tr>
<th>United States (World Headquarters)</th>
<th>United Kingdom</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone: +1-412-967-6440</td>
<td>Phone: +44 (0)1256 855055</td>
<td>Phone: +81 (0)50 5830 6814</td>
</tr>
<tr>
<td>Fax: +1-412-967-6870</td>
<td>Fax: +44 (0)1256 855649</td>
<td>Fax: +81 (0)43 306 3773</td>
</tr>
<tr>
<td>Email: service@aerotech.com</td>
<td>Email: service@aerotech.co.uk</td>
<td>Email: service@aerotechkk.com.jp</td>
</tr>
<tr>
<td></td>
<td>101 Zeta Drive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pittsburgh, PA 15238-2897</td>
<td></td>
</tr>
<tr>
<td></td>
<td>www.aerotech.com</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Germany</th>
<th>China</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone: +49 (0)911 967 9370</td>
<td>Phone: +86 (21) 3319 7715</td>
</tr>
<tr>
<td>Fax: +49 (0)911 967 93720</td>
<td>Email: saleschina@aerotech.com</td>
</tr>
<tr>
<td>Email: service@aerotechgmbh.de</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>France</th>
<th>Taiwan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone: +33 1 64 93 58 67</td>
<td>Phone: +886 (0)2 8751 6690</td>
</tr>
<tr>
<td>Email: sales@aerotech.co.uk</td>
<td>Email: service@aerotech.tw</td>
</tr>
</tbody>
</table>

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2013-2015, Aerotech, Inc. All rights reserved.
Table of Contents

Table of Contents ... iii
List of Figures .. iv
List of Tables .. v

EC Declaration of Conformity .. vii
Agency Approvals .. viii
Safety Procedures and Warnings .. ix
Quick Installation Guide .. xi

Chapter 1: Introduction ... 1
 1.1. Electrical Specifications ... 4
 1.2. Mechanical Specifications ... 5
 1.3. Environmental Specifications .. 6
 1.4. Drive and Software Compatibility .. 7

Chapter 2: Installation and Configuration .. 9
 2.1. Unpacking the Chassis .. 9
 2.2. Electrical Installation .. 10
 2.2.1. AC Power Connection ... 11
 2.2.2. IO and Signal Wiring Requirements 11
 2.2.3. Minimizing Conducted, Radiated, and System Noise 12
 2.3. Motor and Feedback Connections .. 13
 2.4. Emergency Stop Sense Input (TB101) 14
 2.5. Auxiliary I/O Connector (J106) .. 15
 2.5.1. Position Synchronized Output (PSO) 16
 2.5.2. Opto-Isolated Outputs 0-3 .. 18
 2.5.3. Opto-Isolated Inputs 0-3 ... 20
 2.5.4. High-Speed User Inputs 4-5 .. 22
 2.5.5. Analog Output 4 ... 23
 2.6. Joystick Interface (J105) .. 24
 2.6.1. Analog Outputs (0-3) (J105) ... 26
 2.6.2. Analog Inputs (0-3) (J105) .. 27
 2.7. Communication (Ethernet and USB) .. 28
 2.7.1. USB Interface .. 28
 2.7.2. Ethernet Interface .. 29
 2.8. PC Configuration and Operation Information 30

Chapter 3: Maintenance .. 31
 3.1. Preventative Maintenance .. 31

Appendix A: Warranty and Field Service 33
Appendix B: Revision History .. 35
Index .. 37
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Ensemble QLAB Controller</td>
<td>1</td>
</tr>
<tr>
<td>1-2</td>
<td>Functional Diagram</td>
<td>3</td>
</tr>
<tr>
<td>1-3</td>
<td>Dimensions</td>
<td>5</td>
</tr>
<tr>
<td>2-1</td>
<td>Power and Control Connections</td>
<td>10</td>
</tr>
<tr>
<td>2-2</td>
<td>Power Switch</td>
<td>10</td>
</tr>
<tr>
<td>2-3</td>
<td>ESTOP Sense Input (TB102)</td>
<td>14</td>
</tr>
<tr>
<td>2-4</td>
<td>PSO Interface</td>
<td>17</td>
</tr>
<tr>
<td>2-5</td>
<td>Outputs Connected in Current Sinking Mode (J106)</td>
<td>18</td>
</tr>
<tr>
<td>2-6</td>
<td>Outputs Connected in Current Sourcing Mode (J106)</td>
<td>19</td>
</tr>
<tr>
<td>2-7</td>
<td>Inputs Connected in Current Sinking Mode (J106)</td>
<td>21</td>
</tr>
<tr>
<td>2-8</td>
<td>Inputs Connected in Current Sourcing Mode (J106)</td>
<td>21</td>
</tr>
<tr>
<td>2-9</td>
<td>High Speed User Inputs (J106)</td>
<td>22</td>
</tr>
<tr>
<td>2-10</td>
<td>Analog Output 4 (J106)</td>
<td>23</td>
</tr>
<tr>
<td>2-11</td>
<td>Joystick Interface</td>
<td>24</td>
</tr>
<tr>
<td>2-12</td>
<td>Analog Outputs 0-3 (J105)</td>
<td>26</td>
</tr>
<tr>
<td>2-13</td>
<td>Analog Input (J105)</td>
<td>27</td>
</tr>
<tr>
<td>2-14</td>
<td>USB Connection Location (for PC Communication)</td>
<td>28</td>
</tr>
<tr>
<td>2-15</td>
<td>Ethernet Connection Location</td>
<td>29</td>
</tr>
</tbody>
</table>
List of Tables

Table 1-1: Ordering Options ... 2
Table 1-2: Electrical Specifications .. 4
Table 1-3: Physical Specifications ... 5
Table 1-4: Ensemble Drive and Software Compatibility 7
Table 2-1: Main AC Power Input Voltages and Current Requirements 11
Table 2-2: Ferrite Bead Part Numbers .. 12
Table 2-3: Motor Power and Feedback Connector 13
Table 2-4: TB101 ESTOP Pin Assignment ... 14
Table 2-5: Electrical Noise Suppression Devices 14
Table 2-6: Auxiliary I/O Interface Pin Assignment (J106) 15
Table 2-7: PSO Specifications ... 16
Table 2-8: PSO Pin Assignment .. 16
Table 2-9: Port 0 Digital Output Connector Pin Assignment 18
Table 2-10: Digital Output Specifications .. 18
Table 2-11: Port 0 Digital Input Connector Pin Assignment (J106) 20
Table 2-12: PS2815-4 Opto-Device Specifications 20
Table 2-13: Port 0 High Speed Digital Input Connector Pin Assignment (J106) 22
Table 2-14: Analog Output Connector Pin Assignment (J106) 23
Table 2-15: Joystick Connector Pin Assignment (J105) 25
Table 2-16: Analog Output Connector Pin Assignment (J105) 26
Table 2-17: Analog Input Connector Pin Assignment (J105) 27
Table 3-1: Preventative Maintenance ... 31
EC Declaration of Conformity

Manufacturer: Aerotech, Inc.
Address: 101 Zeta Drive
Pittsburgh, PA 15238-2897
USA
Product: Ensemble QLAB
Model/Types: All

This is to certify that the aforementioned product is in accordance with the applicable requirements of the following Directive(s):

- 2006/95/EC Low Voltage Directive
- 2011/65/EU RoHS 2 Directive

and has been designed to be in conformity with the applicable requirements of the following documents when installed and used in accordance with the manufacturer’s supplied installation instructions.

- EN 61010-1 Safety requirements for electrical equipment

Name / Alex Weibel
Position: Engineer Verifying Compliance
Location: Pittsburgh, PA
Date: June 30, 2015
Agency Approvals

Aerotech, Inc. Model Ensemble QLAB Motion Controllers have been tested and found to be in accordance to the following listed Agency Approvals:

- **Approval / Certification**: CUS NRTL
- **Approving Agency**: TUV SUD America Inc.
- **Certificate #**: U8 14 08 68995
- **File / Report #**: NI1405756_101
- **Standards**: UL 61010-1; CAN/CSA-C22.2 No. 61010-1
Safety Procedures and Warnings

The following statements apply wherever the Warning or Danger symbol appears within this manual. Failure to observe these precautions could result in serious injury to those individuals performing the procedures and/or damage to the equipment.

NOTE: Aerotech continually improves its product offerings; listed options may be superseded at any time. All drawings and illustrations are for reference only and were complete and accurate as of this manual’s release. Refer to www.aerotech.com for the most up-to-date information.

WARNING:
To minimize the possibility of electrical shock, bodily injury or death the following precautions must be followed.

1. Operators must be trained before allowing them to operate the equipment.
2. All service and maintenance must be performed by qualified personnel.
3. Modification or use of this product in an unspecified manner may result in equipment damage or bodily injury (shock or death).
4. The user must read this manual, Ensemble Help file, and related documentation thoroughly before operating the equipment.
5. Cables can pose a tripping hazard. Securely mount and position all system cables to avoid potential hazards.
6. This product must be mounted securely. Improper mounting can result in injury and damage to the equipment.

DANGER:
This product contains potentially lethal voltages. To reduce the possibility of electrical shock, bodily injury or death the following precautions must be followed.

1. Do not connect or disconnect any electrical components or connecting cables while connected to a power source.
2. Disconnect electrical power before making any mechanical adjustments or performing maintenance.
3. Make sure the system is properly grounded in accordance with local electrical safety requirements.
4. Operator safeguarding requirements must be addressed during final integration of the product.
This page intentionally left blank.
Quick Installation Guide

This chapter describes the order in which connections and settings should typically be made to the Ensemble QLAB. If a custom interconnection drawing was created for your system (look for a line item on your Sales Order under the heading “Integration”), that drawing can be found on your software or documentation disc.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Connect the AC Power</td>
<td>Section 2.2.</td>
</tr>
<tr>
<td>B Connect the Motor Power and Feedback</td>
<td>Section 2.3.</td>
</tr>
</tbody>
</table>

Warning: Hazardous voltage present up to 10 minutes after power is disconnected.
Chapter 1: Introduction

Aerotech’s Ensemble QLAB is a one to four axis desktop standalone motion controller with an integrated power supply. The Ensemble QLAB is designed for applications where ease of operation is desired without sacrificing overall system capability.

<table>
<thead>
<tr>
<th>Number of Axes</th>
<th>4 Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Inputs</td>
<td>Four Optically Isolated; Two High Speed; One ESTOP</td>
</tr>
<tr>
<td>Digital Outputs</td>
<td>Four Optically Isolated</td>
</tr>
<tr>
<td>Analog Inputs</td>
<td>Four 16-Bit analog inputs (±10 V; configurable for external feedback or external command input)</td>
</tr>
<tr>
<td>Analog Outputs</td>
<td>Five 16-Bit differential analog outputs (±10 V; configurable for position or voltage monitoring)</td>
</tr>
<tr>
<td>Communication Interfaces</td>
<td>10/100 Base T Ethernet; USB 2.0</td>
</tr>
<tr>
<td>Expansion Interface</td>
<td>USB 1.1</td>
</tr>
<tr>
<td>Servo Loop Update</td>
<td>20 kHz</td>
</tr>
<tr>
<td>Programming Environment</td>
<td>Multi-Tasking AeroBasic</td>
</tr>
<tr>
<td>Host Operating System</td>
<td>Windows 7 (for Remote Programming and Diagnostic Tools)</td>
</tr>
</tbody>
</table>

Figure 1-1: Ensemble QLAB Controller
Table 1-1: Ordering Options

<table>
<thead>
<tr>
<th>Number of Axes (required)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2AX</td>
<td>Configured for 2 axis motor operation</td>
</tr>
<tr>
<td>-3AX</td>
<td>Configured for 3 axis motor operation</td>
</tr>
<tr>
<td>-4AX</td>
<td>Configured for 4 axis motor operation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line Voltage (required)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-A</td>
<td>115 VAC input</td>
</tr>
<tr>
<td>-B</td>
<td>230 VAC input</td>
</tr>
<tr>
<td>-C</td>
<td>100 VAC input</td>
</tr>
<tr>
<td>-D</td>
<td>200/208 VAC input</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feedback Type (optional)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-MXC1</td>
<td>Configured for 1 axis of capacitance sensor feedback</td>
</tr>
<tr>
<td>-MXC2</td>
<td>Configured for 2 axes of capacitance sensor feedback</td>
</tr>
<tr>
<td>-MXC3</td>
<td>Configured for 3 axes of capacitance sensor feedback</td>
</tr>
<tr>
<td>-MXC4</td>
<td>Configured for 4 axes of capacitance sensor feedback</td>
</tr>
</tbody>
</table>

Note: All closed-loop channels must occur on the controller axis count before the open-loop channels. For example, if 2 axes of closed-loop and 1 axis of open-loop are desired, 3 axes are selected (-3AX) and -MXC2 is selected which will give channels 1 and 2 as cap feedback and channel 3 as open-loop.

<table>
<thead>
<tr>
<th>PSO Output (optional)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-PSO</td>
<td>Single axis Position Synchronized Output.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line Cord (required)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ENGLAND</td>
<td>U.K. compatible line cord</td>
</tr>
<tr>
<td>-GERMANY</td>
<td>German compatible line cord</td>
</tr>
<tr>
<td>-ISRAEL</td>
<td>Israel compatible line cord</td>
</tr>
<tr>
<td>-INDIA</td>
<td>India compatible line cord</td>
</tr>
<tr>
<td>-AUSTRALIA</td>
<td>Australia compatible line cord</td>
</tr>
<tr>
<td>-US-115VAC</td>
<td>US 115 VAC compatible line cord</td>
</tr>
<tr>
<td>-US-230VAC</td>
<td>US 230 VAC compatible line cord</td>
</tr>
<tr>
<td>-NO-LINECORD</td>
<td>No line cord</td>
</tr>
</tbody>
</table>
The following block diagram shows a connection summary (refer to Chapter 2 for more detailed connection information).

Figure 1-2: Functional Diagram
1.1. Electrical Specifications

The electrical specifications for the Ensemble QLAB are listed below.

Table 1-2: Electrical Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Ensemble QLAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td></td>
</tr>
<tr>
<td>Input Voltage (VAC)</td>
<td>100 VAC</td>
</tr>
<tr>
<td>Input Frequency (Hz)</td>
<td>50-60 Hz</td>
</tr>
<tr>
<td>Inrush Current (A)</td>
<td>7 A</td>
</tr>
<tr>
<td>Maximum Continuous Input Current A</td>
<td>2 A</td>
</tr>
<tr>
<td>Output Voltage (V)</td>
<td>-30 to 150 V</td>
</tr>
<tr>
<td>Peak Output Current (mA/channel)</td>
<td>300 mA/channel</td>
</tr>
<tr>
<td>Continuous Output Current (mA/channel)</td>
<td>130 mA/channel</td>
</tr>
<tr>
<td>Warm Up Time (for optimum positioning performance and accuracy)</td>
<td>15 Minutes</td>
</tr>
<tr>
<td>Continuous Power Output (Watts/channel)</td>
<td>20 Watts/channel (80 Watts total)</td>
</tr>
<tr>
<td>Sensor Resolution (open loop or capacitive sensor (closed-loop))</td>
<td>20 Bit</td>
</tr>
<tr>
<td>Power Amplifier Bandwidth (Hz)</td>
<td>2500 Hz Maximum (software selectable)</td>
</tr>
<tr>
<td>User Power Supply Output (VDC)</td>
<td>5 VDC (@ 500 mA)</td>
</tr>
</tbody>
</table>

(1) Load Dependent
1.2. Mechanical Specifications

The following figure shows the Ensemble QLAB package dimensions.

Figure 1-3: Dimensions

<table>
<thead>
<tr>
<th>Weight</th>
<th>5.7 kg [12.6 lbs]</th>
</tr>
</thead>
</table>

Table 1-3: Physical Specifications
1.3. Environmental Specifications

The environmental specifications for the Ensemble QLAB are listed below.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Temperature</td>
<td>Operating: 0° to 50°C (32° to 122° F) Storage: -30° to 85°C (-22° to 185° F)</td>
</tr>
<tr>
<td>Humidity</td>
<td>Maximum relative humidity is 80% for temperatures up to 31°C. Decreasing linearly to 50% relative humidity at 40°C. Non condensing.</td>
</tr>
<tr>
<td>Altitude</td>
<td>Up to 2000 meters.</td>
</tr>
<tr>
<td>Pollution</td>
<td>Pollution degree 2 (normally only non-conductive pollution).</td>
</tr>
<tr>
<td>Use</td>
<td>Indoor use only.</td>
</tr>
</tbody>
</table>
1.4. Drive and Software Compatibility

The following table lists the available Ensemble drives and which version of the Ensemble software first provided support for a given drive. Drives that list a specific version number in the Last Software Version column will not be supported after the listed version.

Table 1-4: Ensemble Drive and Software Compatibility

<table>
<thead>
<tr>
<th>Drive Type</th>
<th>Firmware Revision</th>
<th>First Software Version</th>
<th>Last Software Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td>-</td>
<td>1.01</td>
<td>Current</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>2.55</td>
<td>Current</td>
</tr>
<tr>
<td>CP</td>
<td>A</td>
<td>1.00</td>
<td>Current</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2.54</td>
<td>Current</td>
</tr>
<tr>
<td>Epaq(1)</td>
<td>-</td>
<td>1.00</td>
<td>Current</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>2.55</td>
<td>Current</td>
</tr>
<tr>
<td>HLe</td>
<td>-</td>
<td>2.51</td>
<td>Current</td>
</tr>
<tr>
<td>HPe</td>
<td>-</td>
<td>2.51</td>
<td>Current</td>
</tr>
<tr>
<td>LAB</td>
<td>-</td>
<td>4.04</td>
<td>Current</td>
</tr>
<tr>
<td>ML</td>
<td>-</td>
<td>3.00</td>
<td>Current</td>
</tr>
<tr>
<td>MP</td>
<td>-</td>
<td>1.00</td>
<td>Current</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>2.55</td>
<td>Current</td>
</tr>
<tr>
<td>QDe/QL/QLe</td>
<td>-</td>
<td>5.01</td>
<td>Current</td>
</tr>
<tr>
<td>QLAB</td>
<td>-</td>
<td>4.07</td>
<td>Current</td>
</tr>
</tbody>
</table>

(1) This section does not apply to the Epaq MR. The Epaq MR contains multiple ML or MP drives. Refer to either the ML or MP drive type to determine the value for your Epaq MR.
Chapter 2: Installation and Configuration

This section describes the minimum hardware installation and configuration requirements for the Ensemble QLAB. This installation will provide information on AC power connections and motor wiring.

DANGER: To minimize the possibility of bodily injury or death, disconnect all electrical power prior to performing any maintenance or making adjustments to the equipment.

2.1. Unpacking the Chassis

DANGER: All electronic equipment and instrumentation are wrapped in antistatic material and packaged with desiccant. Ensure that the antistatic material is not damaged during unpacking.

DANGER: Cables should not be connected to or disconnected from the Ensemble QLAB drive chassis while power is applied, nor should any drive modules be removed or inserted into it with power applied. Doing so may cause damage to the system or its components.

Visually inspect the container of the Ensemble QLAB for any evidence of shipping damage. If any such damage exists, notify the shipping carrier immediately.

Remove the packing list from the Ensemble QLAB container. Make sure that all the items specified on the packing list are contained within the package.

All of the documentation provided with the Ensemble QLAB should be saved for future reference. Additional information about the Ensemble QLAB system is provided on the Serial and Power labels that are placed on the Ensemble QLAB chassis.

The system serial number label contains important information such as the:

- Customer order number (please provide this number when requesting product support)
- Drawing number
- System part number

The Ensemble QLAB power label contains the factory configured AC power requirements.

DANGER: The AC power label must be changed if the AC Input Voltage is reconfigured.
2.2. Electrical Installation

Motor, power, control, and position feedback cable connections are made to the rear of the Ensemble QLAB. For a complete list of electrical specifications, refer to Section 1.1. Electrical Specifications.

![Diagram of Ensemble QLAB rear panel with labeled connections]

<table>
<thead>
<tr>
<th>B</th>
<th>Motor Power / Feedback Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Aux I/O Connector</td>
</tr>
<tr>
<td>D</td>
<td>Joystick Connector</td>
</tr>
<tr>
<td>E</td>
<td>ESTOP Terminal Block</td>
</tr>
<tr>
<td>F</td>
<td>USB Port</td>
</tr>
<tr>
<td>G</td>
<td>Ethernet Port</td>
</tr>
</tbody>
</table>

Figure 2-1: Power and Control Connections

![Diagram of Ensemble QLAB control panel with labeled components]

| A | Power Switch |

Figure 2-2: Power Switch

All low voltage connections must be made using cables/wires sized for the maximum currents that will be carried. Insulation on these cables/wires must be rated at 300 V if this wiring can come into contact with wiring operating above 100 V (AC & Motor wiring). Low voltage wiring should not be bundled with AC and motor wiring to minimize signal disturbances due to EMI interference and coupling.

NOTE: The machine integrator, OEM or end user is responsible for meeting the final protective grounding requirements of the system.

NOTE: Confirm that the AC power is the correct voltage before turning on power to the Ensemble QLAB.
2.2.1. AC Power Connection

AC input power to the Ensemble QLAB is applied to the AC power receptacle that is located on the rear panel. The power cord connected to this receptacle also provides the protective earth ground connection and may serve as a Mains disconnect. The main power switch is located on the front panel of the Ensemble QLAB. Refer to Section 1.1. for the electrical specifications.

WARNING: The AC power cord is the Mains disconnect.

Table 2-1: Main AC Power Input Voltages and Current Requirements

<table>
<thead>
<tr>
<th>AC Input Voltage</th>
<th>Input Amps (maximum continuous)</th>
<th>Connector Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 VAC 50/60 Hz</td>
<td>2 A</td>
<td></td>
</tr>
<tr>
<td>115 VAC 50/60 Hz</td>
<td>2 A</td>
<td></td>
</tr>
<tr>
<td>200 VAC 50/60 Hz</td>
<td>1 A</td>
<td></td>
</tr>
<tr>
<td>230 VAC 50/60 Hz</td>
<td>1 A</td>
<td></td>
</tr>
</tbody>
</table>

The AC power cord to the Ensemble QLAB must be rated for the line voltage being used and have a minimum current capacity of 5 A. The insulation for the AC power wiring must be appropriately rated for the environment. The temperature rating of the insulation must be at least 80°C. Environmental conditions may necessitate the need to meet additional AC wiring requirements or specifications. AC wiring should not be bundled with signal wiring to minimize EMI coupling and interference.

2.2.2. IO and Signal Wiring Requirements

The I/O, communication, and position feedback connections are typically low amplitude signals. Wire and connectors used for signal wiring must be rated for at least 30 V and have a current capacity of at least .25 A. Wires and connectors used for low voltage power connections such as +5 V must have a current capacity of at least 1 A. In applications where there are significant wire distances, a larger wire size is required to reduce the voltage drops that occur along the wires. This increase is necessary to keep the voltage within tolerance at a remote point.

When signal wiring is in close proximity to wiring operating at voltages above 60 V, the insulation rating of the signal wiring must be rated for the higher voltage. Use signal wiring with a voltage rating of at least 300 V when it is in proximity to AC power or motor power wiring.
2.2.3. Minimizing Conducted, Radiated, and System Noise

To reduce electrical noise, observe the following motor and input power wiring techniques.

1. Use shielded cable to carry the motor current and tie the shield to earth ground.
2. Use a cable with sufficient insulation. This reduces the capacitive coupling between the leads that, in tum, reduces the current generated in the shield wire.
3. Provide strong earth ground connections to the amplifier and the motor. Offering electrical noise a low impedance path to earth ground not only reduces radiated emissions, but also improves system performance.
4. User connections to the product must be made using shielded cables with metal D-style connectors and back shells. The shield of the cables must be connected to the metal back shell in order for the product to conform to the radiated emission standards.
5. The Ensemble QLAB is a component designed to be integrated with other electronics. EMC testing must be conducted on the final product configuration.
6. Ferrite beads or Aerotech’s FBF-1 or FBF-2 filter adapters, may be used on the motor leads to reduce the effects of amplifier EMI/RFI, produced by PWM (pulse width modulation) amplifiers.

Table 2-2: Ferrite Bead Part Numbers

<table>
<thead>
<tr>
<th>Wire Size</th>
<th>Aerotech P/N</th>
<th>Third Party P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 mm² (#14 AWG)</td>
<td>EIZ01027</td>
<td>#2643002402 Elna-Fair-Rite Products</td>
</tr>
<tr>
<td>1.3 mm² (#16 AWG)</td>
<td>EIZ01025</td>
<td>#2643250402 Elna-Fair-Rite Products</td>
</tr>
<tr>
<td>0.8 mm² (#18 AWG)</td>
<td>EIZ01001</td>
<td>#2673000801 Elna-Fair-Rite Products</td>
</tr>
<tr>
<td>0.5 mm² (#20 AWG)</td>
<td>EIZ01001</td>
<td>#2673000801 Elna-Fair-Rite Products</td>
</tr>
</tbody>
</table>
2.3. Motor and Feedback Connections

Table 2-3: Motor Power and Feedback Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE</td>
<td>Outer Shield</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Connector key (to prevent improper connection)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Frame ground for piezo stage</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Piezo Actuator High Voltage +</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Piezo Actuator Return -</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Position Feedback</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Signal Common</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Signal Common</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Signal Common</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Signal Common</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Signal Common</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Signal Common</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Signal Common</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Signal Common</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Signal Common</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Signal Common</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Signal Common</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mating Connector</th>
<th>Aerotech P/N</th>
<th>Third Party P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-Pin D-Connector</td>
<td>ECK00101</td>
<td>FCI DB25P064TXLF</td>
</tr>
<tr>
<td>Backshell</td>
<td>ECK00656</td>
<td>Amphenol 17E-1726-2</td>
</tr>
</tbody>
</table>
2.4. Emergency Stop Sense Input (TB101)

The ESTOP sense input is used to monitor the state of an external safety circuit only. This state is indicated by the software and may be used to facilitate system restart. This ESTOP sense input is not intended to be a complete safety system.

WARNING: The user is responsible for assessing operator risk levels and designing the external safety circuits appropriately.

The ESTOP input is scaled for an input voltage of 5-24 volts. Using a higher input voltage requires adding an external series resistor to limit the current to 10 milliamps.

If the ESTOP bit is enabled in the FaultMask axis parameter, the ESTOP input must be driven to prevent the ESTOP fault condition.

![Diagram of ESTOP Sense Input (TB102)](image)

Figure 2-3: ESTOP Sense Input (TB102)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>In/Out/Bi</th>
<th>Connector Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Emergency Stop Opto-Isolated Input +</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Emergency Stop Opto-Isolated Input -</td>
<td>Input</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Connecting the ESTOP input to a relay or other noise producing device requires the use of noise suppression devices such as those in Table 2-5. These devices are applied across the switched coil to suppress transient voltages.

<table>
<thead>
<tr>
<th>Device</th>
<th>Aerotech P/N</th>
<th>Third Party P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC (.1uf / 200 ohm) Network</td>
<td>EIC240</td>
<td>Electrocube RG1782-8</td>
</tr>
<tr>
<td>Varistor</td>
<td>EID160</td>
<td>Littelfuse V250LA40A</td>
</tr>
</tbody>
</table>

Table 2-4: TB101 ESTOP Pin Assignment

Table 2-5: Electrical Noise Suppression Devices
2.5. Auxiliary I/O Connector (J106)

The Auxiliary I/O connector provides 6 digital inputs, 1 analog and 4 digital outputs, and PSO outputs.

Table 2-6: Auxiliary I/O Interface Pin Assignment (J106)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AUX Sine +</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AUX Sine -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>High Speed Input 4 +</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>High Speed Input 4 -</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>High Speed Input 5 +</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>High Speed Input 5 -</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Opto-Isolated Output 0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Opto-Isolated Output 1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Opto-Isolated Output 2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>AUX Cosine +</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>AUX Cosine -</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>+5 Volt (500 mA max)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Analog Input 0 + (Differential)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Analog Input 0 - (Differential)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Common for Opto-Isolated Outputs 0-3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Opto-Isolated Output 3</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Opto-Isolated Input 0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Opto-Isolated Input 1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Aux Marker - / PSO -(^{(2)})</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Aux Marker + / PSO +(^{(2)})</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Common</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Analog Output 0</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Analog Common</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Common for Opto-Isolated Inputs 0-3</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Opto-Isolated Input 2</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Opto-Isolated Input 3</td>
<td></td>
</tr>
</tbody>
</table>

1. Pins not shown are reserved.
2. For PSO, see Section 2.5.1.

Mating Connector	Aerotech P/N	Third Party P/N
Connector | ECK01259 | Kycon K86-AA-26P|
Backshell | ECK01022 | Amphenol 17-1725-2|

NOTE: These items are provided as a set under the Aerotech P/N: MCK-26HDD.
2.5.1. Position Synchronized Output (PSO)

The Ensemble QLAB includes a Position Synchronized Output (PSO) feature. The PSO output is available on the dual function Laser Output 1 signal lines (optically-isolated open drain/open source format or as RS-422 differential signals). Issuing any PSOCONTROL command automatically enables the auxiliary marker as the PSO output.

The PSO can be programmed to generate an output synchronized to the feedback position, typically used to fire a laser or sequence an external device. Trigger signals may be derived from the standard feedback channel, auxiliary feedback channel, or a software trigger. The synchronized output pulse is generated using high-speed hardware, allowing minimal latency (200 nanoseconds) between the trigger condition and the output.

The PSO can track feedback with a maximum data (count) rate of 33 MHz.

Table 2-7: PSO Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Frequency</td>
<td>12.5 MHz</td>
</tr>
</tbody>
</table>

Table 2-8: PSO Pin Assignment

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Aux Marker / PSO -</td>
</tr>
<tr>
<td>20</td>
<td>Aux Marker + / PSO +</td>
</tr>
<tr>
<td>23</td>
<td>Analog Common</td>
</tr>
</tbody>
</table>
* Active low output shown. Opposite polarity available by reversing connections to Pins 19 and 20.

Figure 2-4: PSO Interface
2.5.2. Opto-Isolated Outputs 0-3

All outputs are rated for 24 VDC and 80 mA per output and can be connected as current sinking (Figure 2-5) or current sourcing (Figure 2-6).

Table 2-9: Port 0 Digital Output Connector Pin Assignment

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Opto-Isolated Output 0</td>
</tr>
<tr>
<td>8</td>
<td>Opto-Isolated Output 1</td>
</tr>
<tr>
<td>9</td>
<td>Opto-Isolated Output 2</td>
</tr>
<tr>
<td>15</td>
<td>Common for Opto-Isolated Outputs 0-3</td>
</tr>
<tr>
<td>16</td>
<td>Opto-Isolated Output 3</td>
</tr>
</tbody>
</table>

Table 2-10: Digital Output Specifications

<table>
<thead>
<tr>
<th>PS7214-1A Opto Device Specifications</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Voltage</td>
<td>24 V maximum</td>
</tr>
<tr>
<td>Maximum Sink/Source Current</td>
<td>80 mA/output @ 20 °C; 60 mA/output @ 50 °C</td>
</tr>
<tr>
<td>Output Saturation Voltage</td>
<td>2.75 V at maximum current</td>
</tr>
<tr>
<td>Output Resistance</td>
<td>33 Ω</td>
</tr>
<tr>
<td>Rise / Fall Time</td>
<td>250 usec (2K pull up to 24V)</td>
</tr>
<tr>
<td>Maximum Output Frequency</td>
<td>1 kHz</td>
</tr>
</tbody>
</table>

NOTE: Outputs must be connected as all sourcing or all sinking.

![Figure 2-5: Outputs Connected in Current Sinking Mode (J106)](#)

⚠️ EACH OUTPUT 80 mA MAXIMUM

⚠️ DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.
Each output 80 mA maximum

Diode required on each output that drives an inductive device (coil), such as a relay.

Figure 2-6: Outputs Connected in Current Sourcing Mode (J106)
2.5.3. Opto-Isolated Inputs 0-3

User inputs 0-3 are scaled for an input voltage of 5-24 VDC.

Figure 2-7 and Figure 2-8, respectively, illustrate how to connect a device in current sinking and sourcing current modes.

Table 2-11: Port 0 Digital Input Connector Pin Assignment (J106)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Opto-Isolated Input 0</td>
</tr>
<tr>
<td>18</td>
<td>Opto-Isolated Input 1</td>
</tr>
<tr>
<td>24</td>
<td>Common for Opto-Isolated Inputs 0-3</td>
</tr>
<tr>
<td>25</td>
<td>Opto-Isolated Input 2</td>
</tr>
<tr>
<td>26</td>
<td>Opto-Isolated Input 3</td>
</tr>
</tbody>
</table>

1. Pins not shown are reserved.

Table 2-12: PS2815-4 Opto-Device Specifications

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>Approximate Input Current</th>
<th>Turn On Time</th>
<th>Turn Off Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5 V</td>
<td>1 mA</td>
<td>200 usec</td>
<td>2000 usec</td>
</tr>
<tr>
<td>+24 V</td>
<td>6 mA</td>
<td>4 usec</td>
<td>1500 usec</td>
</tr>
</tbody>
</table>

NOTE: Inputs must be connected in the all sourcing or all sinking configuration.
Figure 2-7: Inputs Connected in Current Sinking Mode (J106)

Figure 2-8: Inputs Connected in Current Sourcing Mode (J106)
2.5.4. High-Speed User Inputs 4-5

The high-speed inputs are scaled for an input voltage of 5-24 VDC. The high-speed inputs are isolated by an HCPL-0630 and have a typical delay of 50 ns.

Table 2-13: Port 0 High Speed Digital Input Connector Pin Assignment (J106)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>High Speed Input 4 +</td>
</tr>
<tr>
<td>4</td>
<td>High Speed Input 4 -</td>
</tr>
<tr>
<td>5</td>
<td>High Speed Input 5 +</td>
</tr>
<tr>
<td>6</td>
<td>High Speed Input 5 -</td>
</tr>
</tbody>
</table>

![Figure 2-9: High Speed User Inputs (J106)](image-url)
2.5.5. Analog Output 4

Analog Output 4 produces a single-ended output in the range of ±10 volts with a resolution of 305 μV (16-bit). The maximum recommended output current is 5 mA (2 k Ohm load). The analog output voltage is referenced to J106-23.

Refer to Section 2.6.1. for Analog Outputs 0-3.

Table 2-14: Analog Output Connector Pin Assignment (J106)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Analog Output 0</td>
</tr>
<tr>
<td>23</td>
<td>Analog Common</td>
</tr>
</tbody>
</table>

![Figure 2-10: Analog Output 4 (J106)](image-url)
2.6. Joystick Interface (J105)

Aerotech joysticks JI (NEMA12 (IP54) rated) and JBV are powered from 5V and have a nominal 2.5V output in the center detent position. Three buttons are used to select axis pairs and speed ranges. An optional interlock signal is used to indicate to the controller that the joystick is present. Joystick control will not activate unless the joystick is in the center location. Third party devices can be used provided they produce a symmetric output voltage within the range of 0V to +5V.

Refer to the Ensemble Help File for programming information about how to change joystick parameters.

![Figure 2-11: Joystick Interface](image-url)
Table 2-15: Joystick Connector Pin Assignment (J105)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>In/Out/Bi</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5 Volt Power to joystick</td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Button A (Axis Select)</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Analog Input 1 [Joystick X]</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Analog Common</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Analog Input 0</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Analog Input 2 [Joystick Y]</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Button B (Speed Select)</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Analog Common</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Analog Output 0</td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Analog Output 1</td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Analog Input 3</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Analog Common</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Joystick Interlock Input</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Analog Output 2</td>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Analog Output 3</td>
<td>Output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mating Connector</th>
<th>Aerotech P/N</th>
<th>Third Party P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-Pin D-Connector</td>
<td>ECK00100</td>
<td>FCI DA15P064TXLF</td>
</tr>
<tr>
<td>Backshell</td>
<td>ECK01022</td>
<td>Amphenol 17E-1725-2</td>
</tr>
</tbody>
</table>
2.6.1. Analog Outputs (0-3) (J105)

Analog Outputs 0-3 produce a single-ended output in the range of ±10 V with a resolution of 305 μV (16-bit). The maximum recommended output current is 5 mA (2 k Ohm load). The analog output voltage is referenced to an Analog Common pin.

Refer to Section 2.5.5. for Analog Output 4.

Table 2-16: Analog Output Connector Pin Assignment (J105)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>In/Out/Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Analog Common</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>Analog Common</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td>Analog Output 0</td>
<td>Output</td>
</tr>
<tr>
<td>10</td>
<td>Analog Output 1</td>
<td>Output</td>
</tr>
<tr>
<td>12</td>
<td>Analog Common</td>
<td>--</td>
</tr>
<tr>
<td>14</td>
<td>Analog Output 2</td>
<td>Output</td>
</tr>
<tr>
<td>15</td>
<td>Analog Output 3</td>
<td>Output</td>
</tr>
</tbody>
</table>

Figure 2-12: Analog Outputs 0-3 (J105)
2.6.2. Analog Inputs (0-3) (J105)

Analog Inputs 0-3 are 16-bit single-ended (non-differential) inputs that accept a voltage in the range of +/-10V with a resolution of 305µV. Signals outside of this range may damage the input. To read a signal from channel 0, connect the signal common of the source to analog common (pin 8, Analog Common) and the analog source signal to analog input 0 (pin 5, Analog Input 0).

Table 2-17: Analog Input Connector Pin Assignment (J105)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>In/Out/Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Analog Input 1 [Joystick X]</td>
<td>Input</td>
</tr>
<tr>
<td>4</td>
<td>Analog Common</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>Analog Input 0</td>
<td>Input</td>
</tr>
<tr>
<td>6</td>
<td>Analog Input 2 [Joystick Y]</td>
<td>Input</td>
</tr>
<tr>
<td>8</td>
<td>Analog Common</td>
<td>--</td>
</tr>
<tr>
<td>11</td>
<td>Analog Input 3</td>
<td>Input</td>
</tr>
<tr>
<td>12</td>
<td>Analog Common</td>
<td>--</td>
</tr>
</tbody>
</table>

Figure 2-13: Analog Input (J105)
2.7. Communication (Ethernet and USB)

Either USB or Ethernet can be used to connect any of the supplied software applications or a custom application built with the supplied .NET library to the controller. Ethernet sockets are also available for general ASCII communication with another hardware device. Refer to the Help for more information about the ASCII interface.

2.7.1. USB Interface

The USB connection is established through a Type B female connector labeled USB on the Ensemble QLAB (refer to Figure 2-14). This can be accomplished by one of these two methods:

Method 1: Directly connect to the PC with a standard USB cable. The cable connector type must be Type A or Type B male depending on the PC, and Type B male on the Ensemble QLAB.

Method 2: Connect through a USB hub. The cable connector type must be Type A or Type B male depending on the hub, and Type B male on the Ensemble QLAB.

Method 1 is the most commonly used. Method 2 is necessary only when the number of Ensemble QLABs to be connected is larger than the number of available USB ports on the PC.

![USB Connection Location](image-url)

Figure 2-14: USB Connection Location (for PC Communication)
2.7.2. Ethernet Interface

The Ethernet interface is the high-speed communications media to the Ensemble QLAB. Command and configuration information is sent through this interface.

The Ethernet connection is established through the RJ-45 connector labeled ETHERNET on the Ensemble QLAB (refer to Figure 2-15). Connection is accomplished by one of these two methods:

- **Method 1**: Directly connect to the PC with an RJ-45 crossover cable.
- **Method 2**: Connect through a network with a standard RJ-45 cable.

Method 1 is the most secure because it guarantees that the only members of the network are the Ensemble QLAB and the PC. This type of connection is not feasible unless the PC has two Ethernet cards. If the PC cannot be connected to an external network, Aerotech recommends Method 2.

Method 2 is a more typical configuration. The network can be a local network (the PC and Ensemble QLAB are connected through a hub or switch) or remote (the devices are connected through a router). When connecting to a remote network, a crossover cable cannot be used; instead, there must be a hub, switch, or router interface between the PC and the Ensemble QLAB.

![Figure 2-15: Ethernet Connection Location](image-url)
2.8. PC Configuration and Operation Information

For additional information about Ensemble QLAB and PC configuration, hardware requirements, programming, utilities and system operation refer to the Ensemble Help file.
Chapter 3: Maintenance

DANGER: For your own safety and for the safety of the equipment, do not remove the cover of the Ensemble QLAB or attempt to access its internal components.

There is no reason to remove the cover or access the internal components. The Ensemble QLAB does not have any user-configurable switches or jumpers. Internal fuses are not user-replaceable.

NOTE: Having to replace a fuse indicates a more serious problem with the system or setup; consult Aerotech for assistance.

3.1. Preventative Maintenance

The Ensemble QLAB and external wiring should be inspected monthly. Inspections may be required at more frequent intervals, depending on the environment and use of the system.

DANGER: Always disconnect the Mains power connection before opening the Ensemble QLAB chassis.

<table>
<thead>
<tr>
<th>Table 3-1: Preventative Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check</td>
</tr>
<tr>
<td>Visually Check chassis for loose or damaged parts / hardware. Note: Internal inspection is not required.</td>
</tr>
<tr>
<td>Inspect cooling vents.</td>
</tr>
<tr>
<td>Check for fluids or electrically conductive material exposure.</td>
</tr>
<tr>
<td>Visually inspect all cables and connections.</td>
</tr>
</tbody>
</table>

Cleaning

The Ensemble QLAB chassis can be wiped with a clean, dry, soft cloth. The cloth may be slightly moistened if required with water or isopropyl alcohol to aid in cleaning if necessary. In this case, be careful not to allow moisture to enter the Ensemble QLAB or onto exposed connectors / components. Fluids and sprays are not recommended because of the chance for internal contamination, which may result in electrical shorts and/or corrosion. The electrical power must be disconnected from the Ensemble QLAB while cleaning. Do not allow cleaning substances or other fluids to enter the Ensemble QLAB or to get on to any of the connectors. Avoid cleaning labels to prevent removing the label information.
This page intentionally left blank.
Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech’s liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech’s products are specifically designed and/or manufactured for buyer’s use or purpose. Aerotech’s liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTEC BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Returned Product Warranty Determination

After Aerotech’s examination, warranty or out-of-warranty status will be determined. If upon Aerotech’s examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

- Fixed Fee Repairs - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

- All Other Repairs - After Aerotech’s evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer’s expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer’s expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.
Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

Service Locations

http://www.aerotech.com/contact-sales.aspx?mapState=showMap

<table>
<thead>
<tr>
<th>USA, CANADA, MEXICO</th>
<th>CHINA</th>
<th>GERMANY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerotech, Inc.</td>
<td>Aerotech China</td>
<td>Aerotech Germany</td>
</tr>
<tr>
<td>Global Headquarters</td>
<td>Full-Service Subsidiary</td>
<td>Full-Service Subsidiary</td>
</tr>
<tr>
<td>Phone: +1-412-967-6440</td>
<td>Phone: +86 (21) 3319 7715</td>
<td>Phone: +49 (0)911 967 9370</td>
</tr>
<tr>
<td>Fax: +1-412-967-6870</td>
<td></td>
<td>Fax: +49 (0)911 967 93720</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JAPAN</th>
<th>TAIWAN</th>
<th>UNITED KINGDOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerotech Japan</td>
<td>Aerotech Taiwan</td>
<td>Aerotech United Kingdom</td>
</tr>
<tr>
<td>Full-Service Subsidiary</td>
<td>Full-Service Subsidiary</td>
<td>Full-Service Subsidiary</td>
</tr>
<tr>
<td>Phone: +81 (0)50 5830 6814</td>
<td>Phone: +886 (0)2 8751 6690</td>
<td>Phone: +44 (0)1256 855055</td>
</tr>
<tr>
<td>Fax: +81 (0)43 306 3773</td>
<td></td>
<td>Fax: +44 (0)1256 855649</td>
</tr>
</tbody>
</table>

Have your customer order number ready before calling.
Appendix B: Revision History

<table>
<thead>
<tr>
<th>Rev #</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01.00</td>
<td>June 30, 2015</td>
<td>• Added RoHS statement to the EC Declaration of Conformity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added Agency Approvals section</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated Motor and Feedback connector pin definitions: Section 2.3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated PSO section: Section 2.5.1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated Joystick Interface: Section 2.6.</td>
</tr>
<tr>
<td>1.00.00</td>
<td>November 8, 2013</td>
<td>New Manual</td>
</tr>
</tbody>
</table>
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2006/95/EC</td>
</tr>
<tr>
<td>vii</td>
<td>Ac Power Connection</td>
</tr>
<tr>
<td>11</td>
<td>Altitude</td>
</tr>
<tr>
<td>6</td>
<td>Ambient Temperature</td>
</tr>
<tr>
<td>27</td>
<td>Analog Input 0</td>
</tr>
<tr>
<td>23</td>
<td>Analog Output 4</td>
</tr>
<tr>
<td>15</td>
<td>Auxiliary I/O Connector (J106)</td>
</tr>
<tr>
<td>31</td>
<td>Check chassis for loose or damaged parts / hardware</td>
</tr>
<tr>
<td>31</td>
<td>Check for fluids or electrically conductive material exposure</td>
</tr>
<tr>
<td>31</td>
<td>Cleaning</td>
</tr>
<tr>
<td>4</td>
<td>Continuous Output Current</td>
</tr>
<tr>
<td>4</td>
<td>Continuous Power Output</td>
</tr>
<tr>
<td>18</td>
<td>Digital Output Specifications</td>
</tr>
<tr>
<td>5</td>
<td>dimensions</td>
</tr>
<tr>
<td>7</td>
<td>Drive and Software Compatibility</td>
</tr>
<tr>
<td>4</td>
<td>Electrical Specifications</td>
</tr>
<tr>
<td>14</td>
<td>Emergency Stop Sense Input (TB101)</td>
</tr>
<tr>
<td>vii</td>
<td>EN 61010-1</td>
</tr>
<tr>
<td>6</td>
<td>Environmental Specifications</td>
</tr>
<tr>
<td>14</td>
<td>ESTOP</td>
</tr>
<tr>
<td>29</td>
<td>Ethernet Interface</td>
</tr>
<tr>
<td>13</td>
<td>Feedback Connections</td>
</tr>
<tr>
<td>3</td>
<td>Functional Diagram</td>
</tr>
<tr>
<td>31</td>
<td>fuse</td>
</tr>
<tr>
<td>22</td>
<td>High-Speed User Inputs 4-5</td>
</tr>
<tr>
<td>6</td>
<td>Humidity</td>
</tr>
<tr>
<td>9</td>
<td>inspect</td>
</tr>
<tr>
<td>31</td>
<td>inspect all cables and connections</td>
</tr>
<tr>
<td>31</td>
<td>Inspect cooling vents</td>
</tr>
<tr>
<td>31</td>
<td>Inspection</td>
</tr>
<tr>
<td>9</td>
<td>Installation and Configuration</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>15</td>
<td>J106</td>
</tr>
<tr>
<td>24</td>
<td>Joystick Interface</td>
</tr>
<tr>
<td>31</td>
<td>Maintenance</td>
</tr>
<tr>
<td>5</td>
<td>Mechanical Design</td>
</tr>
<tr>
<td>13</td>
<td>Motor and Feedback Connections</td>
</tr>
<tr>
<td>24</td>
<td>optional joysticks</td>
</tr>
<tr>
<td>20</td>
<td>Opto-Isolated Inputs 0-3</td>
</tr>
<tr>
<td>18</td>
<td>Opto-Isolated Outputs 0-3</td>
</tr>
<tr>
<td>2</td>
<td>Order Options</td>
</tr>
<tr>
<td>4</td>
<td>Output Voltage</td>
</tr>
<tr>
<td>1</td>
<td>Overview</td>
</tr>
<tr>
<td>4</td>
<td>Peak Output Current</td>
</tr>
<tr>
<td>6</td>
<td>Pollution</td>
</tr>
<tr>
<td>16</td>
<td>Position Synchronized Output</td>
</tr>
<tr>
<td>4</td>
<td>Power Amplifier Bandwidth</td>
</tr>
<tr>
<td>4</td>
<td>Power Supply</td>
</tr>
<tr>
<td>31</td>
<td>Preventative Maintenance</td>
</tr>
<tr>
<td>20</td>
<td>PS2815-4 Opto-Device Specifications</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>PS7214-1A Opto Device Specifications</td>
<td>18</td>
</tr>
<tr>
<td>PSO</td>
<td>16</td>
</tr>
<tr>
<td>Quick Installation Guide</td>
<td>xi</td>
</tr>
<tr>
<td>Sensor Resolution</td>
<td>4</td>
</tr>
<tr>
<td>shipping damage</td>
<td>9</td>
</tr>
<tr>
<td>TB101</td>
<td>14</td>
</tr>
<tr>
<td>USB Interface</td>
<td>28</td>
</tr>
<tr>
<td>Use</td>
<td>6</td>
</tr>
<tr>
<td>User Power Supply Output</td>
<td>4</td>
</tr>
</tbody>
</table>