UNIDEX 100

IE-488

OPTION MANUAL

PN: EDU129
IDENTIFICATION

for

Unidex 100 Series
IE-488 Option Manual

by

Aerotech, Inc.
101 Zeta Drive
Pittsburgh, PA 15238-2897

Manual Part Number - EDU129
Version 1.1
Released - November 23, 1993
1st Printing - July 29, 1993
Supplementary Material -
Table of Contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>2.1</td>
<td>IE-488 Interface Connections ... 2-1</td>
</tr>
<tr>
<td>2.2</td>
<td>Setting The Unidex 100 IE-488 Parameters 2-1</td>
</tr>
<tr>
<td>2.3</td>
<td>Initial IE-488 Power Up .. 2-3</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>GETTING STARTED</td>
</tr>
<tr>
<td>3.1</td>
<td>Host Mode Operation .. 3-1</td>
</tr>
<tr>
<td>3.2</td>
<td>Service Request ... 3-1</td>
</tr>
<tr>
<td>3.3</td>
<td>Error and Status Codes .. 3-4</td>
</tr>
<tr>
<td>3.4</td>
<td>Program Examples .. 3-4</td>
</tr>
<tr>
<td>3.4.1</td>
<td>HP85 Immediate Mode Command ... 3-5</td>
</tr>
<tr>
<td>3.4.2</td>
<td>HP85 Write & Read BV Variable ... 3-5</td>
</tr>
<tr>
<td>3.4.3</td>
<td>HP85 Retrieve Program from UNIDEX 100 3-6</td>
</tr>
<tr>
<td>3.4.4</td>
<td>QB Immediate Mode Command .. 3-7</td>
</tr>
<tr>
<td>3.4.5</td>
<td>QB Write & Read BV Variable .. 3-8</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Retrieve Program from UNIDEX 100 .. 3-9</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>PROGRAMMING THE U100</td>
</tr>
<tr>
<td>4.1</td>
<td>Unidex 100 IEEE Option Location .. 4-1</td>
</tr>
<tr>
<td>4.2</td>
<td>IE-488 Interface Board Description ... 4-3</td>
</tr>
<tr>
<td>4.3</td>
<td>IE-488 Interface Board Jumpers ... 4-4</td>
</tr>
<tr>
<td>SECTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>4.4</td>
<td>IE-488 Interface Board Power Requirements</td>
</tr>
<tr>
<td>4.5</td>
<td>IE-488 Connector</td>
</tr>
<tr>
<td>4.6</td>
<td>IEEE Extension Bus Connector (P1)</td>
</tr>
</tbody>
</table>

CHAPTER 5
TROUBLE SHOOTING

APPENDICES

A	IE-488 Cable List	A-1
B	IEEE Host Mode Operation	B-1
C	Command Summary	C-1

INDEX
List of Figures

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
<th>FIGURE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>4-2</td>
<td>Mounting of IEEE Interface Board to U100 Control Board</td>
</tr>
<tr>
<td>4-2</td>
<td>4-3</td>
<td>IE-488 Interface Board</td>
</tr>
<tr>
<td>4-3</td>
<td>4-5</td>
<td>IE-488 Pin Connections</td>
</tr>
<tr>
<td>4-4</td>
<td>4-8</td>
<td>Extension Bus Pinout</td>
</tr>
</tbody>
</table>
CHAPTER 1: INTRODUCTION

The IE-488 option for the UNIDEX 100 permits the user to control the UNIDEX 100 through the IE-488 bus. Using the HOST command set, the IE-488 offers many control capabilities. These include: executing programs and commands, transferring files, and reading or modifying data.

Before continuing, it is best that the user reviews the Unidex 100 User's Manual.
This Page Intentionally Left Blank.
CHAPTER 2: GETTING STARTED

In this chapter you will find information about the initial setup of the IE-488 option. Included is information describing the interface connections, IE-488 parameter setup, and the initial IE-488 power up.

2.1: IE-488 INTERFACE CONNECTIONS

The IE-488 interface is an 8 bit parallel data bus along with eight control lines. It can accommodate up to fifteen devices on the bus. This bus also provides a method of requesting attention from the Host controller. We will refer to this method as the Service Request (see Section 4.2.5 in the Unidex 100 User’s Manual). To properly connect the IE-488 device, all connections made by the user must include approved IE-488 cables. The total cable length must not exceed twenty meters (see IE-488 cable list in Appendix A).

2.2: SETTING THE UNIDEX 100 IE-488 PARAMETERS

To use the IE-488 Mode it is necessary to configure the UNIDEX 100. To do this the user must set the IEEE address parameters (PRM:008 and PRM:009) and the RS-232-C/IE-488 parameter (PRM:019) for the IE-488 mode of operation. For details involving these parameters, see the Unidex 100 User’s Manual.
PRM:008

This parameter is the default value that the IEEE Address Register #0 will use. This parameter sets the mode 0 address, the mode 0 talker enable bit, and the mode 0 listener enable bit. The lower 5 bits are the device address bits (default is 4). Bit #6 is the listener bit (default is enabled). Bit #7 is the talker bit (default is disabled). The parameter default is 0x24.

PRM:009

This parameter is the default value that the IEEE Address Register #1 will use. This parameter sets the mode 1 address, the mode 1 talker enable bit, and the mode 1 listener enable bit. The lower 5 bits are the device address bits (default is 4). Bit #6 is the listener bit (default is disabled). Bit #7 is the talker bit (default is enabled). The parameter default is 0x44.

PRM:019

This parameter allows the user to select either the RS-232 or the IE-488 mode of operation. Setting this parameter to a 1 will enable the RS-232 mode of operation while setting it to a 2 selects the IE-488 mode. Set the value of this parameter last. That is after setting all other IE-488 parameters. The parameter default is a 1 (RS-232).

NOTE: Parameter 008 and 009 should normally use the same address (lower 5 bits). Also, normally the upper bits do not change, nor should they change. For instance, if the user wishes to change the IE-488 device to #7, Parameter #008 should equal 0x27 and Parameter #009 equal 0x47.
NOTE: To get back all the default parameter values the user must perform a setup. See the Unidex 100 User's Manual.

2.3: INITIAL IE-488 POWER UP

By now, the user should have 1.) completely connected the IE-488 system controller using the standard IE-488 cables and 2.) set the parameters for the IE-488 operation. Turn on power (allowing approximately 10 seconds for the UNIDEX 100 to initialize) and the UNIDEX 100 will be ready to receive its first IEEE command. To verify that the IE-488 mode is the current operating mode, do not disconnect the RS-232 device from the UNIDEX 100. Then, verify that the RS-232 is not operational. If it is possible to attain RS-232 operation, parameter #019 may contain an incorrect setting. Verify that the setting for this parameter (PRM:019) is a two. To test the IEEE operation the user must send a host mode command to the UNIDEX 100 (recommend an immediate motion command). See Chapter 3 in this manual for information concerning how to program the UNIDEX 100.

NOTE: If the LED's on the UNIDEX 100 front panel are blinking, this may indicate that the UNIDEX 100 IEEE interface is not operational.
This Page Intentionally Left Blank.
CHAPTER 3: PROGRAMMING THE U100

While in the IEEE mode of operation, this Chapter shows how to program the UNIDEX 100 through the Host Mode Command Set. Along with these commands the UNIDEX 100 incorporates a Service Request. The following sections describe how to program the UNIDEX 100 while in this mode.

3.1: HOST MODE OPERATION

To control the UNIDEX 100 in IEEE mode it is necessary that the user use the Host Mode commands. These commands are special code formats that the UNIDEX 100 translates into commands. For information regarding the Host Mode commands, refer to Appendix B in this manual.

3.2: SERVICE REQUEST

The UNIDEX 100 uses the Service Request line to request attention from the Host Controller when operating in IE-488 communication mode. Upon activating the Service Request, it is necessary for the Host Controller to serial poll the UNIDEX 100. Failure to poll the UNIDEX 100 will result in the appearance of a locked up UNIDEX 100.

The Service Request consists of an SRQ status code. The UNIDEX 100 sends multiple SRQ's on an individual basis with each one requiring its own serial poll. The SRQ status code provides information concerning the Service Request. To obtain the true SRQ status code, the user must remove the SRQ bit by subtracting 64 (0x40) from the received SRQ status byte. If the SRQ status is equal to 3 (after removing the SRQ bit) the user must read in up to 3 additional bytes to obtain the error code before any commands can be sent to the UNIDEX 100. Failure to read the error codes can result in a lockup of the UNIDEX 100. See the Unidex 100 User's Manual for additional information concerning Service Request codes. For example:

A received SRQ = 67 (0x43)
= 67 - 64 = 3 (true SRQ code).
Since 3 represents an error, the user must read in up to 3 bytes to obtain the error code.

Task 0 Service Request Status Codes

0x00 Reserved
0x01 Program Uploading in Progress
0x02 Program Downloading in Progress
0x03 Host Mode Command Processing Error
0x04 Memory Allocation Error
0x05 "Line #" Update for "Task 1 Window" Running in Host Mode
0x06 "Line #" Update for "Task 2 Window" Running in Host Mode
0x07 Ready for Commands in Host Mode (RS-232 only)

Task 1 Service Request Status Codes

0x10 Reserved
0x11 User Defined #1
0x12 User Defined #2
0x13 User Defined #3
0x14 User Defined #4
0x15 User Defined #5
0x16 User Defined #6
0x17 User Defined #7
0x18 User Defined #8
0x19 User Defined #9
0x1A User Defined #10
0x1B User Defined #11
0x1C User Defined #12
0x1D User Defined #13
0x1E User Defined #14
0x1F User Defined #15
Task 2 Service Request Status Codes

0x20 Reserved
0x21 User Defined #1
0x22 User Defined #2
0x23 User Defined #3
0x24 User Defined #4
0x25 User Defined #5
0x26 User Defined #6
0x27 User Defined #7
0x28 User Defined #8
0x29 User Defined #9
0x2A User Defined #10
0x2B User Defined #11
0x2C User Defined #12
0x2D User Defined #13
0x2E User Defined #14
0x2F User Defined #15

Kernel Service Request Status Codes

0x30 Reserved
0x31 Initiate "Xon" (allow RS-232 Host to transmit)
0x32 Initiate "Xoff" (stop RS-232 Host from transmitting)
0x33 SRQ Exception Mask encountered a "true" condition

NOTE: IEEE Service Request Status Codes may contain Bit 6 set. (e.g., Status Code 0x01 may be received as 0x41).
3.3: ERROR AND STATUS CODES

Descriptions on the Error and Status codes for the UNIDEX 100 appear in Section 4.7 of the UNIDEX 100 User's Manual. To obtain these codes the user may use the Host mode commands to read the associated registers. Below you will find a list of the most important UNIDEX 100 Status Registers.

Register 015 - Compiler Errors
Register 016 - Task 1 Run Time Error
Register 017 - Task 2 Run Time Error
Register 018 - System Library Access Error
Register 302 - Error Status
Register 303 - Axis Status
Register 304 - System Status

3.4: PROGRAM EXAMPLES

In this section you will find IEEE program examples used with the UNIDEX 100. These examples are very basic and serve as an aide in the understanding of the IE-488 interface. The following examples demonstrate an immediate mode move, writing and reading a BV variable, and reading a program from the UNIDEX 100.
3.4.1: HP85 Immediate Mode Command

The following program is an HP85 program used to issue an immediate mode motion command to the UNIDEX 100.

```
10 ! ; HP85 Immediate Mode command to move
    ; axis.
20 ! Move Axis
30 !
40 IMAGE #, "CBD(1000)", "↑" ; Host Mode Immediate Mode command
50 OUTPUT 704 USING 40 ; Send command to U100
60 END ; End of Program
```

3.4.2: HP85 Write & Read BV Variable

The following program is an HP85 program used to load BV:28 with a value of 10 and also read the value of BV:28 back.

```
10 ! ; HP85 Write & Read BV:28
20 ! Write & Read BV:28
30 !
40 IMAGE #, "FCCA", ZZ, "↑B" ; Host Mode command for BV:28 Write
50 IMAGE #, ZZ, "↑" ; Specify # value digits and LF
60 OUTPUT 704 USING 40 ; Send Host Mode command for BV:28
    ; Write
70 OUTPUT 704 USING 50 ; 10 ; Send new value for BV:28
80 IMAGE #, "FCCA", ZZ, "↑A" ; Host Mode command for BV:28 Read
90 IMAGE #%, #%K ; Input Specifications
100 OUTPUT 704 USING 80 ; 28 ; Send Host Mode command for BV:28
    ; Read
110 ENTER 704 USING 90 ; XS ; Input BV:28 value
120 DISP XS ; Display BV:28 value
130 END ; End of Program
```
3.4.3: HP85 Retrieve Program from UNIDEX 100

This program is an HP85 program used to acquire a program from the UNIDEX 100. This program also contains a serial poll example.

```
10 !                      ; HP85 get program #2
20 !                      ; Provide program buffer
30 !                      ; Input/Output buffer
40 DIM Z$[1000]            ; Serial poll flag
50 IOBUFFER ZS            ; Setup interrupt conditions
55 B=0                    ; Enable interrupt
60 ON INTR 7 GOSUB 1000    ; Device #4 remote
70 ENABLE INTR 7 ; 8       ; Host Mode command to request
80 REMOTE 704             ; program
90 IMAGE #, #FDBA", 1Z, "↑"     ; Request program #2 for U100
100 OUTPUT 704 USING 90 ; 2          ; Wait until serial poll is performed
110 IF B=0 THEN GOTO 110               ; Set up end of transmission entry
120 ON EOT 7 GOTO 200                ; line
130 TRANSFER 704 to Z$ INTR ; DELIM 126  ; EOF terminates
140 RESUME 7                 ; Continue
150 ! Loop Till Data Terminated ; Loop again
160 GOTO 150                 ; Display program #2
200 DISP Z$                  ; End of Main Program
210 END

1000 !
1010 ! Service Request
1020 !
1030 S=SPOLL (704)          ; Do serial poll
1040 STATUS 7, 1 ; C0       ; IEEE status
1050 B=1                    ; Set serial poll flag
1060 ENABLE INTR 7 ; 8 @ RETURN ; Enable serial poll interrupt
1100 END                    ; End of Program
```
3.4.4: QB Immediate Mode Command

The following program is a Quick Basic program used to issue an immediate mode motion command to the UNIDEX 100. Initially, Aerotech wrote this program for the National Instruments GPIB board using the Universal language interface "HP-Style Calls".

```
/IEEE BASIC PROGRAM #2, IMMEDIATE MOVE COMMAND
/INITIALIZE THE INPUT & OUTPUT CHANNELS
OPEN "gpib0" FOR OUTPUT AS #1 ; IEEE output channel
OPEN "gpib0" FOR INPUT AS #2 ; IEEE input channel
/INITIALIZE THE BUS & RESET TO DEFAULT PARAMETERS
PRINT #1, "ABORT" ; Initialize IEEE port
PRINT #1, "RESET" ; Reset IEEE port
PRINT #1, "GPIBEOS OUT CR" ; IEEE output string terminator
PRINT #1, "TIMEOUT 0" ; Timeout

/PLACE THE DEVICE IN THE REMOTE STATE
PRINT #1, "REMOTE 4" ; IEEE device #4 REMOTE
PRINT #1 "CLEAR 4" ; Clear device #4

/SEND THE COMMANDS TO THE U100
PRINT #1, "OUTPUT 4 ; #CBD(1000)" ; Immediate Mode Host Command
"MOTION"

END ; End of Program
```
3.4.5: QB Write & Read BV Variable

The following program is a Quick Basic program used to load BV:28 with a value of 10 and also read the value of BV:28 back. Aerotech wrote this program for the National Instruments GPIB board using the Universal Language. "HP-style Calls".

```
//IEEE BASIC PROG. WRITE, READ BV:28
//INITIALIZE THE INPUT & OUTPUT CHANNELS
OPEN "gpiib0" FOR OUTPUT AS #1     ; IEEE Output Channel
OPEN "gpiib0" FOR INPUT AS #2      ; IEEE Input Channel

; INITIALIZE THE BUS & RESET TO DEFAULT PARAMETERS
PRINT #1, "ABORT"                   ; Initialize IEEE Port
PRINT #1, "RESET"                   ; Reset IEEE Port
PRINT #1, "GPIBEOS OUT CR"          ; IEEE Output String Terminator
PRINT #1, "TIMEOUT 0"               ; Timeout

; PLACE THE DEVICE IN THE REMOVE STATE
PRINT #1, "REMOTE 4"                ; IEEE Device #4 Remote
PRINT #1, "CLEAR 4"                 ; Clear IEEE Device #4

; SEND THE COMMANDS TO THE U100
PRINT #1, "OUTPUT 4 ; #FCCA28"      ; Send Host Command for BV:28
PRINT #1, "OUTPUT 4 ; A"            ; Read
PRINT #1, "ENTER 4"                 ; IEEE for Input
INPUT #2, AS                         ; Get BV:28 value
PRINT AS                              ; Display BV:28 value
END                                    ; End of Program
```
3.4.6: Retrieve Program from UNIDEX 100

The following program is a Quick Basic program used to get a program from the UNIDEX 100. Aerotech wrote this program for the National Instruments GPIB board using the Universal language Interface "HP-Style Calls". This program will acquire program No. 2 from the UNIDEX 100.

```
/IEEE QBASIC PROG, GET PROGRAM #2
/INTERRUPT SERVICE SETUP & ENABLE
ON PEN GOSUB INTSRVC
PEN ON
/INITIALIZE THE INPUT & OUTPUT CHANNELS
OPEN "gpiob0" FOR OUTPUT AS #1
OPEN "gpiob0" FOR INPUT AS #2
/INITIALIZE THE BUS & RESET TO DEFAULT PARAMETERS
PRINT #1, "ABORT"
PRINT #1, "RESET"
PRINT #1, "GPIBEOIS IN CHR(\x7E)"
PRINT #1, "GPIBEOIS OUT CR"
/PLACE THE DEVICE IN THE REMOTE STATE
PRINT #1, "REMOTE 4"
PRINT #1, "CLEAR 4"
/GET PROG #2 FROM U100
A = 0
CLS
PRINT #1, "OUTPUT 4 : #FDBA2"
PRINT "WAIT FOR INTERRUPT"
WHILE A = 0
WEND
PRINT #1, "GPIBEOIS IN CHR(\x07E) CHR(\x07E)
PRINT #1, "ENTER 4"
INPUT #2, PS
PRINT PS
END
INTSRVC:
PRINT #1, "SPOOL 4"
INPUT #2, SP%
A = 1
PRINT #1, "STATUS"
INPUT #2, IBSTA%, IBERR%, IBCNT%
PRINT SP%
RETURN
END
```

; Set up serial poll interrupt
; Enable Interrupt
; IEEE output channel
; IEEE input channel
; Initialize IEEE
; Reset IEEE
; IEEE input string terminator EOF
; IEEE output string terminator
; Remote device #4
; Reset device 4
; Clear serial poll interrupt flag
; Clear screen
; Host command to get program #2
; Display wait for interrupt
; Loop till serial poll performed
; Loop back to previous line
; Change terminator to 2 EOF's
; Enable input
; Read in program #2
; Display program
; End of Main Program
; Serial poll interrupt subroutine
; Do serial poll
; Get serial poll
; Set serial interrupt flag
; Request IEEE status
; Get status
; Print status
; Return to Main Program
; End of Entire Program.
CHAPTER 4: HARDWARE

This chapter contains information that concerns the IEEE board and related hardware. It provides information on both electrical and mechanical features.

4.1: UNIDEX 100 IEEE OPTION LOCATION

The Unidex 100 IE-488 Interface Board mounts to the UNIDEX 100 Control Board with four #4-40 x 3/4" standoffs. These standoffs get screwed into the female studs located behind the mounting holes on the Control Board. There are two #4-40 x 1/4" screws that go through the mounting holes at the front of the IEEE Interface Board. Then, the screws get screwed into the remaining two standoffs. For an example on how to mount the IEEE Interface Board to the UNIDEX 100 Control Board, see Figure 4-1 on the following page.
Figure 4-1: Mounting of IEEE Interface Board to the UNIDEX 100 Control Board

NOTE: This option can be field installed, however it requires option wiring (Consult Factory). The UNIDEX 100 Control Board can mount 2 option boards.
4.2: IE-488 INTERFACE BOARD DESCRIPTION

The IE-488 Interface Board is a 3U size board that provides the UNIDEX 100 with IEEE capability. Figure 4-2 shows the IEEE Interface Board.

Figure 4-2: IE-488 Interface Board
4.3: IE-488 INTERFACE BOARD JUMPERS

There are two jumpers on the IEEE Interface Board. The first jumper is JP1 and selects the clock for the IEEE board. This jumper normally selects a 5.12 MHz. external clock (JP1, 2-3). To select the on board clock source of 8 MHz set JP1 to 1-2.

The second jumper is JP2. This jumper connects the IEEE connector shield to common. In normal use, there is no connection between the shield and common (JP2, 2-3). To connect the shield to common, place JP2 to 1-2.

The following are recommended Jumper Positions:

JP1 - 2-3 (select external 5.12 MHz clock)

JP2 - 2-3 (shield not connected to common)

4.4: IE-488 INTERFACE BOARD POWER REQUIREMENTS

The IE-488 Interface Board requires +5 volts, all of which the Extension Bus connector P1 provides. By no means should this voltage be greater than 5.25 volts or less than 4.75. Voltages not falling within the operating range may cause damage or communication failures.

NOTE: The Extension Bus connector supplies ±12v. The IEEE, however, does not use these supplies.

NOTE: The IEEE Interface Board uses all 5v. logic level.
4.5: IE-488 CONNECTOR

The IE-488 connector is a standard 24 pin IE-488 connector. The total cable length may not exceed 20 meters. It is necessary to use a standard IE-488 cable. Examples of these cables appear in Appendix A of this manual. Below, Figure 4-3 shows the IE-488 connector. Descriptions of the pins shown in this figure follow.

UNIDEX 100 4-3: IE-488 Pin Connections
<table>
<thead>
<tr>
<th>PIN #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIO1 - Data line #1.</td>
</tr>
<tr>
<td>2</td>
<td>DIO2 - Data line #2.</td>
</tr>
<tr>
<td>3</td>
<td>DIO3 - Data line #3.</td>
</tr>
<tr>
<td>4</td>
<td>DIO4 - Data line #4.</td>
</tr>
<tr>
<td>5</td>
<td>EOI (End of Identify) - This control line indicates the last data byte and will Parallel Poll devices using the ATN line.</td>
</tr>
<tr>
<td>6</td>
<td>DAV (Data Valid) - This control line, used by the talker device, will indicate to the listener devices that the data is valid.</td>
</tr>
<tr>
<td>7</td>
<td>NRFD (Not Ready for Data) - This control line indicates that one or more devices are not ready for data.</td>
</tr>
<tr>
<td>8</td>
<td>NDAC (Not Data Accepted) - This control line indicates that one or more devices have not accepted the data.</td>
</tr>
<tr>
<td>9</td>
<td>IFC (Interface Clear) - The system controller activates this control line and place all devices in the unaddressed state. This line will also cause the system controller to be the active device.</td>
</tr>
<tr>
<td>10</td>
<td>SRQ (Service Request) - This control line indicates that one or more devices require attention. Following activation of this line the controller performs a poll of the devices to determine which one is requesting service. A Serial Poll will clear the SRQ.</td>
</tr>
<tr>
<td>11</td>
<td>ATN (Attention) - This control line when asserted true sends bus interface messages on the data bus. This line, asserted with EOI, will do a parallel poll. When ATN is false, it is possible to send data over the bus by a designated talker.</td>
</tr>
<tr>
<td>12</td>
<td>Shield - This pin is the cable shield that normally connects to ground at the system controller. The U100 IE-488 board contains a shield jumper JP2 (1-2 is grounded and 2-3 is unconnected).</td>
</tr>
<tr>
<td>PIN#</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>13</td>
<td>DIO5 - Data line #5.</td>
</tr>
<tr>
<td>14</td>
<td>DIO6 - Data line #6.</td>
</tr>
<tr>
<td>15</td>
<td>DIO7 - Data line #7.</td>
</tr>
<tr>
<td>16</td>
<td>DIO8 - Data line #8.</td>
</tr>
<tr>
<td>17</td>
<td>REN (Remote Enable) - This control line will place any addressed listening device into the remote mode, upon asserting this line.</td>
</tr>
<tr>
<td>18</td>
<td>GND (Ground) - Typically twisted wire pair with DAV line.</td>
</tr>
<tr>
<td>19</td>
<td>GND (Ground) - Typically twisted wire pair with NRFD line.</td>
</tr>
<tr>
<td>20</td>
<td>GND (Ground) - Typically twisted wire pair with NDAC line.</td>
</tr>
<tr>
<td>21</td>
<td>GND (Ground) - Typically twisted wire pair with IFC line.</td>
</tr>
<tr>
<td>22</td>
<td>GND (Ground) - Typically twisted wire pair with SRQ line.</td>
</tr>
<tr>
<td>23</td>
<td>GND (Ground) - Typically twisted wire pair with ATN line.</td>
</tr>
<tr>
<td>24</td>
<td>Signal Ground - This is signal common.</td>
</tr>
</tbody>
</table>
4.6: IEEE EXTENSION BUS CONNECTOR (P1)

The IEEE Extension Bus connector (P1) serves two purposes. It supplies power to the IEEE Interface board and transfers data between the Control Board and the IEEE Interface board. Followed by Figure 4-4 below is a description of all the Extension Bus pins.

![Diagram of IEEE Extension Bus Connector (P1)](image)

Figure 4-4: Extension Bus Pinout
<table>
<thead>
<tr>
<th>IEEE (P1)</th>
<th>U100 (P5)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>2</td>
<td>+5V</td>
</tr>
<tr>
<td>2A</td>
<td>4</td>
<td>Ground</td>
</tr>
<tr>
<td>3A</td>
<td>6</td>
<td>ED1 - Extension Bus Data line #1.</td>
</tr>
<tr>
<td>4A</td>
<td>8</td>
<td>ED3 - Extension Bus Data line #3.</td>
</tr>
<tr>
<td>5A</td>
<td>10</td>
<td>ED5 - Extension Bus Data line #5.</td>
</tr>
<tr>
<td>6A</td>
<td>12</td>
<td>ED7 - Extension Bus Data line #7.</td>
</tr>
<tr>
<td>7A</td>
<td>14</td>
<td>ED9 - Extension Bus Data line #9.</td>
</tr>
<tr>
<td>8A</td>
<td>16</td>
<td>ED11 - Extension Bus Data line #11.</td>
</tr>
<tr>
<td>9A</td>
<td>18</td>
<td>ED13 - Extension Bus Data line #13.</td>
</tr>
<tr>
<td>10A</td>
<td>20</td>
<td>ED15 - Extension Bus Data line #15.</td>
</tr>
<tr>
<td>11A</td>
<td>22</td>
<td>ED17 - Extension Bus Data line #17.</td>
</tr>
<tr>
<td>12A</td>
<td>24</td>
<td>ED19 - Extension Bus Data line #19.</td>
</tr>
<tr>
<td>13A</td>
<td>26</td>
<td>ED21 - Extension Bus Data line #21.</td>
</tr>
<tr>
<td>14A</td>
<td>28</td>
<td>ED23 - Extension Bus Data line #23.</td>
</tr>
<tr>
<td>15A</td>
<td>30</td>
<td>Ground</td>
</tr>
<tr>
<td>16A</td>
<td>32</td>
<td>+12V</td>
</tr>
<tr>
<td>17A</td>
<td>34</td>
<td>-12V</td>
</tr>
<tr>
<td>18A</td>
<td>36</td>
<td>EA1 - Extension Bus Address line #1.</td>
</tr>
<tr>
<td>19A</td>
<td>38</td>
<td>EA3 - Extension Bus Address line #3.</td>
</tr>
<tr>
<td>20A</td>
<td>40</td>
<td>EA5 - Extension Bus Address line #5.</td>
</tr>
<tr>
<td>21A</td>
<td>42</td>
<td>EA7 - Extension Bus Address line #7.</td>
</tr>
<tr>
<td>IEEE (P1)</td>
<td>U100 (P5)</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>22A</td>
<td>44</td>
<td>EA9 - Extension Bus Address line #9.</td>
</tr>
<tr>
<td>23A</td>
<td>46</td>
<td>EA11 - Extension Bus Address line #11.</td>
</tr>
<tr>
<td>25A</td>
<td>50</td>
<td>EA15 - Extension Bus Address line #15.</td>
</tr>
<tr>
<td>26A</td>
<td>52</td>
<td>Ground</td>
</tr>
<tr>
<td>27A</td>
<td>54</td>
<td>EWRITE-N - Extension Bus Write line.</td>
</tr>
<tr>
<td>28A</td>
<td>56</td>
<td>ECLOCK - Extension Bus Clock line.</td>
</tr>
<tr>
<td>29A</td>
<td>58</td>
<td>EBUS STROBE-N - Extension Bus Strobe line.</td>
</tr>
<tr>
<td>30A</td>
<td>60</td>
<td>EBUS WAIT-N - Extension Bus Wait line.</td>
</tr>
<tr>
<td>31A</td>
<td>62</td>
<td>Ground</td>
</tr>
<tr>
<td>32A</td>
<td>64</td>
<td>+5V</td>
</tr>
<tr>
<td>1C</td>
<td>1</td>
<td>+5V</td>
</tr>
<tr>
<td>2C</td>
<td>3</td>
<td>Ground</td>
</tr>
<tr>
<td>3C</td>
<td>5</td>
<td>ED0 - Extension Bus Data line #0.</td>
</tr>
<tr>
<td>4C</td>
<td>7</td>
<td>ED2 - Extension Bus Data line #2.</td>
</tr>
<tr>
<td>5C</td>
<td>9</td>
<td>ED4 - Extension Bus Data line #4.</td>
</tr>
<tr>
<td>6C</td>
<td>11</td>
<td>ED6 - Extension Bus Data line #6.</td>
</tr>
<tr>
<td>7C</td>
<td>13</td>
<td>ED8 - Extension Bus Data line #8.</td>
</tr>
<tr>
<td>8C</td>
<td>15</td>
<td>ED10 - Extension Bus Data line #10.</td>
</tr>
<tr>
<td>9C</td>
<td>17</td>
<td>ED12 - Extension Bus Data line #12.</td>
</tr>
<tr>
<td>10C</td>
<td>19</td>
<td>ED14 - Extension Bus Data line #14.</td>
</tr>
<tr>
<td>IEEE (P1)</td>
<td>U100 (P5)</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>11C</td>
<td>21</td>
<td>ED16 - Extension Bus Data line #16.</td>
</tr>
<tr>
<td>12C</td>
<td>23</td>
<td>ED18 - Extension Bus Data line #18.</td>
</tr>
<tr>
<td>13C</td>
<td>25</td>
<td>ED20 - Extension Bus Data line #20.</td>
</tr>
<tr>
<td>14C</td>
<td>27</td>
<td>ED22 - Extension Bus Data line #22.</td>
</tr>
<tr>
<td>15C</td>
<td>29</td>
<td>Ground</td>
</tr>
<tr>
<td>16C</td>
<td>31</td>
<td>+12V</td>
</tr>
<tr>
<td>17C</td>
<td>33</td>
<td>-12V</td>
</tr>
<tr>
<td>18C</td>
<td>35</td>
<td>EA0 - Extension Bus Address line #0.</td>
</tr>
<tr>
<td>19C</td>
<td>37</td>
<td>EA2 - Extension Bus Address line #2.</td>
</tr>
<tr>
<td>20C</td>
<td>39</td>
<td>EA4 - Extension Bus Address line #4.</td>
</tr>
<tr>
<td>21C</td>
<td>41</td>
<td>EA6 - Extension Bus Address line #6.</td>
</tr>
<tr>
<td>22C</td>
<td>43</td>
<td>EA8 - Extension Bus Address line #8.</td>
</tr>
<tr>
<td>23C</td>
<td>45</td>
<td>EA10 - Extension Bus Address line #10.</td>
</tr>
<tr>
<td>24C</td>
<td>49</td>
<td>EA12 - Extension Bus Address line #12.</td>
</tr>
<tr>
<td>25C</td>
<td>49</td>
<td>EA14 - Extension Bus Address line #14.</td>
</tr>
<tr>
<td>26C</td>
<td>51</td>
<td>Ground</td>
</tr>
<tr>
<td>27C</td>
<td>53</td>
<td>EREAD-N - Extension Bus Read line.</td>
</tr>
<tr>
<td>28C</td>
<td>55</td>
<td>ERESET-N - Extension Bus Reset line.</td>
</tr>
<tr>
<td>29C</td>
<td>57</td>
<td>EENABLE-N - Extension Bus Enable line.</td>
</tr>
<tr>
<td>31C</td>
<td>61</td>
<td>Ground</td>
</tr>
<tr>
<td>32C</td>
<td>63</td>
<td>+5V</td>
</tr>
</tbody>
</table>
This Page Intentionally Left Blank.
CHAPTER 5: TROUBLESHOOTING

This section provides troubleshooting information concerning the IEEE Interface. Communication problems with the IEEE may be related to hardware, the communications program, or the incorrect setup of a UNIDEX 100 parameter. Following is a list of problems and possible causes.

SYMPTOM: Cannot establish communications

POSSIBLE CAUSE: Check IEEE cable

- Verify that the U100 is in the IEEE mode (see Initial IEEE-488 Power up in Section 2.3).

- Check communications program.

- Try another Host command such as an Immediate mode command (motion command). Test command in RS-232 mode to verify that the command is valid.

- Verify that the U100 is not waiting for a Serial Poll to clear a Service Request.

SYMPTOM: UNIDEX 100 locks up

POSSIBLE CAUSE: UNIDEX 100 may be in a Service Request and waiting for a Serial Poll.

- Incomplete or incorrect command sent to the UNIDEX 100. (e.g., a carriage return used with a line feed may cause a lock up.)
SYMPOTOM: Will not transfer files
POSSIBLE CAUSE: Service Request must be serviced before file is transferred.
Files do not exist
Incomplete or incorrect command sent to the UNIDEX 100. (e.g., a carriage return used with a line feed may cause a problem.)

SYMPOTOM: Some commands do not execute
POSSIBLE CAUSE: Task is busy. Check status of UNIDEX 100.
Incomplete or incorrect command sent to the UNIDEX 100. (e.g., a carriage return used with a line feed may cause the command to not be recognized.)
Command error. Check UNIDEX 100 error status.

SYMPOTOM: UNIDEX 100 will not transmit
POSSIBLE CAUSE: Check UNIDEX 100 parameters PRM:008 and PRM:009.
Incomplete or incorrect command sent to the UNIDEX 100.
Waiting for Service Request to be serviced.
The following recommended cables exist for the IE-488. The vendors who supply these include: Hewlett-Packard and Belden Corporation.

Hewlett-Packard

<table>
<thead>
<tr>
<th>PN</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 10833D</td>
<td>.5 Meter</td>
</tr>
<tr>
<td>HP 10833A</td>
<td>1 Meter</td>
</tr>
<tr>
<td>HP 10833B</td>
<td>2 Meter</td>
</tr>
<tr>
<td>HP 10833C</td>
<td>4 Meter</td>
</tr>
<tr>
<td>HP 10834A</td>
<td>Adapter</td>
</tr>
</tbody>
</table>

Belden Corporation

<table>
<thead>
<tr>
<th>PN</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>9642</td>
<td>1 Meter</td>
</tr>
<tr>
<td>9643</td>
<td>2 Meter</td>
</tr>
<tr>
<td>9644</td>
<td>4 Meter</td>
</tr>
<tr>
<td>9645</td>
<td>8 Meter</td>
</tr>
<tr>
<td>9646</td>
<td>16 Meter</td>
</tr>
</tbody>
</table>

NOTE: This cable list is for reference only and does not imply that these are the only cables that will work with the IEEE.
APPENDIX B: IEEE HOST MODE OPERATION

It is necessary for the user to use the Host Mode when operating the UNIDEX 100 in the IE-488 Mode. The intent of this appendix is to list the specifications for the "HOST" command set.

The Host Mode operates in both RS-232-C and IE-488 communications mode. IE-488 automatically selects the Host Mode. For RS-232 Host Mode operation the Unidex 100 User's Manual contains a more detailed Host Mode description.

The following pages describe the IEEE Host Command Set in detail.

NOTE: The keyword <LF> is a line feed character.

NOTE: Possible errors may occur when executing these commands. If this happens, a Service Request number 0x3 gets sent to the Host (applies to both IE-488 and RS-232-C interface modes). The UNIDEX 100 sends the Host Error Code following the SRQ code.

To determine the specific error code, refer to the Unidex 100 User's Manual.

All Service Requests must be acknowledged by performing a serial poll to get the Service Request code. The user must also remove the SRQ bit by subtracting 64 (0x40) to obtain the true SRQ code. If the result is 3, the user must read up to 3 additional bytes to obtain the error code.
Running a "PGM:xx" File

Use the following syntax for running programs while in the IEEE Host Mode.

#B<task number><run mode><program number><LF>

where:

<task number> = "A" for Task 1
 = "B" for Task 2

<run mode> = "A" for Auto Mode
 = "B" for Block Mode

NOTE: The Block Mode does not implement for host interface in Revision 1.0 Software. Use the immediate command mode shown on the following page.

<program number> = number of the desired program (in memory).

EXAMPLE:

```
#BAA1<LF> Run program PGM1 in Task 1 while in the
           Auto Mode.
```

NOTE: If an error occurs a SRQ occurs after the command is sent. To allow a Service Request to immediately follow execution, set PRM:023 and PRM:024.
Sending an Immediate Command

Use the syntax below to send an immediate command while in the IEEE Host Mode.

#C<task number><command string><LF>

where:

<task number> = "A" for Task 1
= "B" for Task 2

<command string> = ASCII string containing the specified command. Appendix C lists the available U100 command set. See the Unidex 100 User's Manual for additional information on these commands.

NOTE: However, certain U100 commands are not applicable for immediate commands (e.g., GOTO:1).

EXAMPLE:

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#CBD(100)<LF></td>
<td>Execute the command D(100) in Task 2. Note that when executing an immediate command for motion (e.g., D(), V(), A(), or T()) that the proceeding GO statement is inferred.</td>
</tr>
<tr>
<td>#CAFV:1=1.5<LF></td>
<td>Execute the command FV:1=1.5 in Task 1.</td>
</tr>
</tbody>
</table>

NOTE: If an error occurs a SRQ will be sent after the command is sent. To allow a Service Request to immediately follow execution, set PRM:023 and PRM:024.
Making a Copy of a File

Use the following syntax to make a copy of a file while in the IEEE Host Mode.

#FB<file type><file number 1><LF><file number 2><LF>

where:

<file type> = "A" for "PGM" file
 = "B" for "DEF" file
 = "C" for "MAC" file
 = "D" for "CAM" file
 = "E" for "LST" file
 = "F" for "DIR" file

<file number 1> = number of selected file to copy.

<file number 2> = number of file to be copied to.

EXAMPLE:

#FBA1<LF>2<LF> Copy file PGM1 to PGM2.

NOTE: A SRQ will be sent if an error occurs.
Erasing a File

Use the following syntax to erase a file while in the IEEE Host Mode.

```plaintext
#FAA<file type><file number><LF>
```

where:

- `<file type>`
 - = "A" for "PGM" file
 - = "B" for "DEF" file
 - = "C" for "MAC" file
 - = "D" for "CAM" file
 - = "E" for "LST" file
 - = "F" for "DIR" file

- `<file number>`
 - = number of selected file to erase.

EXAMPLES:

```plaintext
#FAAB3<LF>          Erase the DEF3 file from program memory.

#FAB<LF>            Erase all files from program memory.
```

NOTE: A SRQ will be sent if an error occurs.
Generating a File Directory

While in the IEEE Host Mode, use the following syntax to generate a directory of files that are currently in program memory (e.g., PGM:xx, DEF:xx, etc.).

#AB<LF>

EXAMPLE:

| #AB<LF> | Generate a file directory. |

NOTE: The UNIDEX 100 will send an IEEE Service Request if an error occurs.
Transfer a File from the Host to the UNIDEX 100

The following syntax is required to transfer a file from the Host to the UNIDEX 100 while in the IEEE Host Mode.

```plaintext
#FDA<file type><file number><LF>
```

where:

- `<file type>`
 - = "A" for "PGM" file
 - = "B" for "DEF" file
 - = "C" for "MAC" file
 - = "D" for "CAM" file
 - = "E" for "LST" file
 - = "F" for "DIR" file

- `<file number>`
 = number of selected file to transfer.

EXAMPLE:

```plaintext
#FDAC4<LF>      Transfer the MAC4 file from the Host to the
                UNIDEX 100's program memory.
```

NOTE: The UNIDEX 100 will send an IEEE Service Request (must be acknowledged) before transferring the program.
Transfer a File from the UNIDEX 100 to the Host

Use the following syntax to transfer a file from the UNIDEX 100 to the Host while in the IEEE Host Mode.

\#FDB<file type><file number><LF>

where:

<file type> = "A" for "PGM" file
= "B" for "DEF" file
= "C" for "MAC" file
= "D" for "CAM" file
= "E" for "LST" file
= "F" for "DIR" file

<file number> = number of selected file type to transfer.

EXAMPLE:

\#FDBA2<LF> Transfer the program 2 file from the UNIDEX 100's program memory to the Host.

NOTE: The UNIDEX 100 sends the SRQ (must be acknowledged) before transferring the program.
Modify the Value of a Parameter

Use the syntax below to modify the value of a specific parameter while in the IEEE Host Mode.

\texttt{#FCA<parm type><parm number><LF>B<parm value><LF>}

where:

<parm type> = "A" for Communication parameters (0xx)
 = "B" for Motion parameters (1xx)
 = "C" for Drive parameters (2xx)
 = "D" for System parameters (3xx)

\textbf{NOTE:} The parameter type is determined by MSD of parameter number (e.g., PRM:202 is drive parameter "C").

<parm number> = number of PRM:xx selected for retrieval. Parm number is the 2 LSD’s of the parameter number (e.g., the parm number for PRM:202 is 2).

<parm value> = value to be passed to the specified parameter. This value can be either a floating point or an integer type depending on the specific parameter selected.

\textbf{EXAMPLE:}

\begin{verbatim}
#FCAB39<LF>B3<LF>
\end{verbatim}

Modify parameter #139 to the value 3.

\textbf{NOTE:} A SRQ will be sent if an error occurs.
Retrieve the Value of a Parameter

Use the following syntax to retrieve the value of a specific parameter while in the IEEE Host Mode.

```
#FCA<parm type><parm number><LF>A
```

where:

- `<parm type>` = "A" for Communication parameters (0xx)
- "B" for Motion parameters (1xx)
- "C" for Drive parameters (2xx)
- "D" for System parameters (3xx)

NOTE: Parameter type is determined by MSD of parameter number (e.g., PRM:202 is drive parameter "C").

- `<parm number>` = number of PRM:xx selected for retrieval. Parameter number is the 2 LSD’s of the parameter number (e.g., the parm number to use for PRM:202 is 2).

EXAMPLE:

```
#FCAA33<LF>A
```

Retrieve the value of parameter PRM:033.

NOTE: A SRQ will be sent if an error occurs.
Modify the Value of a "Write Only" Register

Use the syntax below to modify the value of a "write only" register while in the IEEE Host Mode.

```
#FCB<reg type><reg number><LF><reg value><LF>
```

where:

- `<reg type>` = "A" for Communication registers (0xx)
- = "B" for Motion registers (1xx)
- = "C" for Drive registers (2xx)
- = "D" for System registers (3xx)

NOTE: Register type is determined by MSD of the register number (e.g., REG:308 is the system register "D").

- `<reg number>` = number of REG:xx selected for modification. The reg number is the 2 LSD's of the register number (e.g., the reg number for REG:308 is 8).

- `<reg value>` = value to be passed to the specified write only register. This value can be either an integer or long type depending on the register selected.

EXAMPLE:

```
#FCBD8<LF>0x3C0<LF>  Modifies the value of the write only register
REG:308 to the hexadecimal value of 0x3C0.
```

NOTE: A SRQ will be sent if an error occurs.
Retrieve the Value of a "Read Only" Register

Use the syntax below to retrieve the value of a read only register while in the IEEE Host Mode.

#FCB<reg type><reg number><LF>

where:

<reg type> = "A" for Communication registers (0xx)

 = "B" for Motion registers (1xx)

 = "C" for Drive registers (2xx)

 = "D" for System registers (3xx)

NOTE: The register type is determined by MSD of register number (e.g., REG:015 is communication register "A").

<reg number> = number of REG:xx selected for modification. The reg number is the 2 LSD's of the register number (e.g., the reg number for REG:015 is 15).

EXAMPLE:

```
#FCBA15<LF>  Retrieve the value of the read only register
             REG:015.
```

NOTE: A SRQ will be sent if an error occurs.
Modify the Value of a "Read/Write" Register

Use the following syntax to modify the value of a read/write register while in the IEEE Host Mode.

```
#FCB<reg type><reg number><LF>B<reg value><LF>
```

where:

- `<reg type>` = "A" for Communication registers (0xx)
- = "B" for Motion registers (1xx)
- = "C" for Drive registers (2xx)
- = "D" for System registers (3xx)

NOTE: The register type is determined by MSD of the register number (e.g., REG:202 is drive register "C").

- `<reg number>` = number of REG:xx selected for modification. The register number is the 2 LSD's of the reg number (e.g., the register number to use for REG:202 is 2).

- `<reg value>` = value to be passed to the specified write only register. This value can be either an integer or long type depending on the register selected.

EXAMPLE:

```
#FCBC2<LF>B0<LF>
```

Modify the value of a read/write register REG:202 to the value 0.

NOTE: A SRQ will be sent if an error occurs.
Retrieve the Value of a "Read/Write" Register

Use the syntax below to retrieve the value of a read/write register while in the IEEE Host Mode.

```
#FCB<reg type><reg number><LF>A
```

where:

- `<reg type>` = "A" for Communication registers (0xx)
- = "B" for Motion registers (1xx)
- = "C" for Drive registers (2xx)
- = "D" for System registers (3xx)

NOTE: The register type is determined by the MSD of the register number (e.g., REG:202 is drive register "C").

- `<reg number>` = number of REG:xx selected for retrieval. The reg number is the 2 LSD's of the register number (e.g., the register number to use for REG:202 is 2).

EXAMPLE:

```
#FCBC2<LF>A
```

Retrieve the value of a read/write register REG:202.

NOTE: A SRQ will be sent if an error occurs.
Modify the Value of a Variable

Use the following syntax to modify the value of a variable while in the IEEE Host Mode.

\[\#\text{FCC}<\text{var type}><\text{var number}>\text{LF}B<\text{var value}>\text{LF} \]

where:

\[<\text{var type}> \]

= "A" for Integer variables (BV:)
= "B" for Long variables (LV:)
= "C" for Float variables (FV:)
= "D" for Port variables (PV:)

\[<\text{var number}> \]

= number of VAR:xx selected for modification.

\[<\text{var value}> \]

= value to be passed to the specified variable.

EXAMPLE:

\[\#\text{FCC1000}<\text{LF}B34.8<\text{LF}> \]

Modify the variable FV:1000 to the value of 34.8.

NOTE: A SRQ will be sent if an error occurs.
Retrieve the Value of a Variable

Use the syntax below to retrieve the value of a variable while in the IEEE Host Mode.

```
#FCC<var type><var number><LF>A
```

where:

- `<var type>` = "A" for Integer variables (BV:)
 - "B" for Long variables (LV:)
 - "C" for Float variables (FV:)
 - "D" for Port variables (PV:)

- `<var number>` = number of VAR:xx selected for retrieval.

EXAMPLE:

```
#FCCA33<LF>A
```

Retrieve the value of the variable BV:33.

NOTE: A SRQ will be sent if an error occurs.
Modify the Value of a String Storage Buffer

Use the following syntax to modify the value of a string buffer while in the IEEE Host Mode.

\[\texttt{#FCD<string number>\textbackslash LF}\texttt{B<string data>\textbackslash LF}} \]

where:

\[<\text{string number}> = \text{number of SV:xx selected for modification.} \]

\[<\text{string data}> = \text{any sequence of ASCII printable characters up to and including 20 per string buffer.} \]

EXAMPLE:

\[\texttt{#FCD5\textbackslash LF}\texttt{B\textit{this is string 5}\textbackslash LF}} \]

Modify the string buffer SV:5 with the following string: "this is string 5"

NOTE: A SRQ will be sent if an error occurs.
Retrieve the Value of a String Storage Buffer

Use the following syntax to retrieve the value of a string buffer while in the IEEE Host Mode.

\#FCD<string number>A\<LF>A

where:

<string number> = number of SV:xx selected for modification.

<string data> = any sequence of ASCII printable characters up to and including 20 per string buffer.

EXAMPLE:

\#FCD1\<LF>A Retrieve the character string that is stored in
 the string variable SV:1.

NOTE: A SRQ will be sent if an error occurs.
Move Out of a Limit

Use the following syntax to reset a limit condition while in the IEEE Host Mode. Upon executing this command, the axis attempts to move out of the limit (PRM:128 determines the distance to move).

#EA

EXAMPLE:

| #EA | Reset the limit. |

NOTE: A SRQ will be sent if an error occurs.
Task Control Functions

These functions allow the user to perform block executes, feedholds, and task quit operations. Use the following syntax to perform these functions.

#EB<function>

where:

<function> = "A" for Task A Block Execute (for programs running in the Block Mode).

= "B" for Task A Feedhold

= "C" for Task A Quit

= "F" for Task B Block Execute (for programs running in the Block Mode)

= "G" for Task B Feedhold

= "H" for Task B Quit

NOTE: The user must be prepared to handle multiple Service Requests (all Service Requests must be acknowledged).

NOTE: The user must send the F1 code to return to the IEEE Host Mode.
Task Control Functions Con't

If a program is running in the Block Mode, a Service Request with a line # will be sent (SRQ must be acknowledged).

EXAMPLE:

<table>
<thead>
<tr>
<th>#EBH</th>
<th>Quit the Task B operation.</th>
</tr>
</thead>
<tbody>
<tr>
<td><0x11></td>
<td>Send the F1 code to return to the Host Mode.</td>
</tr>
</tbody>
</table>

NOTE: The F1 code is a single character with a Hex value of 0x11 or a decimal value of 17.
This appendix summaries the UNIDEX 100 Command Set. However, it is important to know that some commands are not applicable for MDI commands.

For additional information on these commands refer to the Unidx 100 User's Manual.

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
<th>SYNTAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEGIN</td>
<td>Beginning of a Program</td>
<td>BEGIN</td>
</tr>
<tr>
<td>DEF</td>
<td>Definition File where the argument is a constant ranging from 1 to 9999.</td>
<td>DEF<number></td>
</tr>
<tr>
<td>END</td>
<td>Program End</td>
<td>END</td>
</tr>
<tr>
<td>ENDMAC</td>
<td>End of the Macro</td>
<td>ENDMAC</td>
</tr>
<tr>
<td>MAC</td>
<td>Macro file where the argument is a constant ranging from 1 to 100.</td>
<td>MAC<number></td>
</tr>
<tr>
<td>MAC</td>
<td>Used inside the MAC file, this command defines the macro program.</td>
<td>MAC<macro name></td>
</tr>
<tr>
<td>TITLE</td>
<td>Attach a title to a program</td>
<td>TITLE<description></td>
</tr>
</tbody>
</table>

Table C-1: Compiler Directives

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
<th>SYNTAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLN</td>
<td>Clear the screen from the specified cursor to the specified column.</td>
<td>CLN<constant or var></td>
</tr>
<tr>
<td>CLS</td>
<td>Clear screen</td>
<td>CLS</td>
</tr>
<tr>
<td>CUR</td>
<td>Move the cursor to the specified row, and specified column.</td>
<td>CUR<constants>,<constant></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CURHV:numero,HV:numero</td>
</tr>
<tr>
<td>GC</td>
<td>Get Character from User Input.</td>
<td><var>=GC</td>
</tr>
<tr>
<td>GM</td>
<td>Get the message from the display and put into variable.</td>
<td><var>=GM<constant or var></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV<number>=GM<constant or var></td>
</tr>
<tr>
<td>PM</td>
<td>Print the message to the screen where the argument is a variable or string.</td>
<td>PM<var or string></td>
</tr>
<tr>
<td>PM</td>
<td>Print a message containing two arguments where the first argument is a variable or string, and the second is a string only.</td>
<td>PM<var or string>,<string></td>
</tr>
</tbody>
</table>

Table C-2: Communication Commands
Table C-3: General Process Motion Commands

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
<th>SYNTAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Acceleration/Deceleration Ramp Time in User (units/sec<sup>2</sup>)</td>
<td>A(<var or constant>)</td>
</tr>
<tr>
<td>ABSL</td>
<td>Absolute Positioning Mode</td>
<td>ABSL</td>
</tr>
<tr>
<td>ADC</td>
<td>Analog to Digital Conversion</td>
<td><var>=ADC</td>
</tr>
<tr>
<td>D</td>
<td>Distance in User Units to move/position</td>
<td>D(<var or constant>)</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital to Analog Conversion</td>
<td>DAC(<var or constant>)</td>
</tr>
<tr>
<td>DD</td>
<td>Direct Drive</td>
<td>DD(<var or constant>)</td>
</tr>
<tr>
<td>DW</td>
<td>Dwell Time (sec); Resolution (1 msec)</td>
<td>DW(<var or constant>)</td>
</tr>
<tr>
<td>GO</td>
<td>Begin a Move</td>
<td>GO</td>
</tr>
<tr>
<td>HM</td>
<td>Hardware Home</td>
<td>HM</td>
</tr>
<tr>
<td>INCR</td>
<td>Incremental Positioning Mode</td>
<td>INCR</td>
</tr>
<tr>
<td>T</td>
<td>Ramp Time (sec)</td>
<td>T(<var or constant>)</td>
</tr>
<tr>
<td>V</td>
<td>Velocity (user units/sec)</td>
<td>V(<var or constant>)</td>
</tr>
</tbody>
</table>

Table C-4: Program Control Commands

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
<th>SYNTAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI</td>
<td>Disable Interrupt</td>
<td>DI</td>
</tr>
<tr>
<td>EI</td>
<td>Enable Interrupt</td>
<td>EI</td>
</tr>
<tr>
<td>ELSE</td>
<td>Else</td>
<td>ELSE</td>
</tr>
<tr>
<td>ELSEIF</td>
<td>Else If</td>
<td>ELSEIF(<var or constant>)</td>
</tr>
<tr>
<td>ENDIF</td>
<td>End If</td>
<td>ENDIF</td>
</tr>
<tr>
<td>ENDSUB</td>
<td>End Subroutine</td>
<td>ENDSUB</td>
</tr>
<tr>
<td>ENDWHL</td>
<td>End While Loop</td>
<td>ENDWHL</td>
</tr>
<tr>
<td>EXIT</td>
<td>Exit Program Operation</td>
<td>EXIT</td>
</tr>
<tr>
<td>GOSUB</td>
<td>Goto subroutine argument where the argument is a constant ranging from 1 to 100.</td>
<td>GOSUB:<number></td>
</tr>
<tr>
<td>GOTO</td>
<td>Goto label argument where the argument is a constant that ranges from 1 to 100.</td>
<td>GOTO:<number></td>
</tr>
<tr>
<td>IF</td>
<td>If then</td>
<td>IF(<var or constant>)</td>
</tr>
<tr>
<td>LB</td>
<td>Label where the argument is a constant ranging from 1 to 100.</td>
<td>LB:<number></td>
</tr>
<tr>
<td>RI</td>
<td>Reset Interrupt Latch</td>
<td>RI</td>
</tr>
<tr>
<td>SRQ</td>
<td>Send Service Request Code for an argument where the argument is a variable or a constant ranging from 1 to 15.</td>
<td>SRQ(<var or constant>)</td>
</tr>
<tr>
<td>SUB</td>
<td>Subroutine - defines the beginning of a subroutine.</td>
<td>SUB:<var or constant></td>
</tr>
<tr>
<td>SYNC</td>
<td>Synchronize</td>
<td>SYNC</td>
</tr>
<tr>
<td>WHL</td>
<td>While</td>
<td>WHL(<var or constant>)</td>
</tr>
<tr>
<td>COMMAND</td>
<td>DESCRIPTION</td>
<td>SYNTAX</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>+</td>
<td>Addition Operator</td>
<td><code><var or constant> + <var or constant></code></td>
</tr>
<tr>
<td>-</td>
<td>Subtraction Operator</td>
<td><code><var or constant> - <var or constant></code></td>
</tr>
<tr>
<td>*</td>
<td>Multiplication Operator</td>
<td><code><var or constant> * <var or constant></code></td>
</tr>
<tr>
<td>/</td>
<td>Division Operator</td>
<td><code><var or constant> / <var or constant></code></td>
</tr>
<tr>
<td>=</td>
<td>Assignment Operator</td>
<td><code><var> = <var or constant></code></td>
</tr>
<tr>
<td>ABS</td>
<td>Absolute Value function</td>
<td><code>ABS(<var or constant>)</code></td>
</tr>
<tr>
<td>AND</td>
<td>Logical AND</td>
<td><code>(<var or constant> AND <var or constant>)</code></td>
</tr>
<tr>
<td>CBI</td>
<td>Convert BCD to integer</td>
<td><code>CBI(<var or constant>)</code></td>
</tr>
<tr>
<td>CIB</td>
<td>Convert integer or floating point to BCD</td>
<td><code>CIB(<var or constant>)</code></td>
</tr>
<tr>
<td>COS</td>
<td>Cosine function (in radians)</td>
<td><code>COS(<var or constant>)</code></td>
</tr>
<tr>
<td>DEC</td>
<td>Decrement</td>
<td><code>DEC(<var>)</code></td>
</tr>
<tr>
<td>INC</td>
<td>Increment</td>
<td><code>INC(<var>)</code></td>
</tr>
<tr>
<td>MDX</td>
<td>Modulo Index</td>
<td><code>MDX(<var>)</code></td>
</tr>
<tr>
<td>OR</td>
<td>Logical OR</td>
<td><code>(<var or constant> OR <var or constant>)</code></td>
</tr>
<tr>
<td>SIN</td>
<td>Sine function (in radians)</td>
<td><code>SIN(<var or constant>)</code></td>
</tr>
<tr>
<td>SQRT</td>
<td>Square root</td>
<td><code>SQRT(<var or constant>)</code></td>
</tr>
<tr>
<td>TAN</td>
<td>Tangent function (in radians)</td>
<td><code>TAN(<var or constant>)</code></td>
</tr>
<tr>
<td>XOR</td>
<td>Exclusive Or</td>
<td><code>(<var or constant> XOR <var or constant>)</code></td>
</tr>
</tbody>
</table>

Table C-5: Math and Logical Operations
This Page Intentionally Left Blank.
INDEX

A
- Address Parameters 2-1

B
- Board Mounting 4-1, 4-2
- Board Wiring 4-2
- Bus 2-1

C
- Cables 2-1, A-1
- Configuring U100 2-1
- Commands
 - Host Mode B1 to B22
 - HP85 Immediate Mode 3-5
 - List of Commands C-1
- Communications Mode 2-1, 2-2
- Connections 2-1
- Control Board 4-8
- Copying a File B-4
- Creating a File Directory B-6

D
- Default Parameter Values 2-3
- Directories
 - Creating of B-6

E
- Erasing a File B-5
- Error Codes 3-4, B-1
- Extension Bus
 - Connector (P1) 4-4, 4-8
 - Pinouts 4-9 to 4-11

F
- Files
 - Copying B-4
 - Erasing B-5
 - Transferring B-7, B-8

H
- Hardware 4-1

I
- IE-488 Cable Length 4-5, A-1
- IE-488 Pin Connector 4-5
- IE-488 Pin Descriptions 4-5
- IEEE Address Register "0" 2-2
- IEEE Address Register "1" 2-2
- IEEE Option Mounting 4-1
- Immediate Commands B-3
- Interface Board 4-1, 4-3, 4-8
 - Jumpers 4-4
 - Power Requirements 4-4
- Interface Connections 2-1

J
- Jumpers for IEEE 4-4
 - JP1 4-4
 - JP2 4-4

K
- Kernel SRQ Status Codes 3-3

L
- LED's 2-3
- Line Feed Character B-1
- Lock Up of U100 3-1

M
- Modifying Parameter Values B-9
- Modifying Register Values B-11, B-13
- Modify String Storage Buffer Values B-17
- Modify Variable Values B-15
- Move out of a Limit B-19

N
- No IEEE Communication 5-1
INDEX

P
- Parameters
 - Communications Mode 2-2
 - IEEE-488 Address Register "0" 2-2
 - IEEE-488 Address Register "1" 2-2
 - Modifying Value of B-11
 - Retrieving Value of B-12
- Parameter Setup 2-1
- Parameter Value Modification B-9
- Pinouts 4-5
- Power Requirements 4-4
- Power up 2-1, 2-3
- Program Examples 3-4 to 3-9
- Program Execution B-2
- Programming 2-1, 3-4 to 3-9

Q
- Quick Basic Programs
 - Immediate Mode Command 3-7
 - Reading/Writing BV Variables 3-8
 - Retrieve Program from U100 3-9

R
- Reading/Writing BV Variables via HP85 3-5
- Registers
 - Modify Value of Read/Write B-13
 - Modify Value of Write Only B-11
 - Retrieve Value of Read Only B-12
 - Retrieve Value of Read/Write B-14
- Retrieve Parameter Values B-9
- Retrieve Register Values B-12, B-14
- Retrieve String Storage Buffer Values B-18
- Retrieve Variable Values B-16
- Retrieve U100 Program via HP85 3-6
- Running a Program B-2

S
- Sending Immediate Commands B-3
- Serial Poll 3-1, 3-6
- Service Request 2-1, 3-1
 - Kernel 3-3
 - Task 0 3-2

T
- Task 0 SRQ Status Codes 3-2
- Task 1 SRQ Status Codes 3-2
- Task 2 SRQ Status Codes 3-3
- Task Control Functions B-20
- Trouble Shooting
 - Executing Commands 5-2
 - Lock Up of U100 5-1
 - Transferring Files 5-2
 - Transmitting the U100 5-2
 - Unable to operate IEEE Interface 2-3

V
- Variables
 - Modify Value of B-16
 - Retrieve Value of B-17

W
- Wiring 4-2